Science in the medieval Islamic world

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.
(Redirected from
Islamic science
)

motions of the planets

Science in the medieval Islamic world was the science developed and practised during the

ophthalmology, pharmacology, physics, and zoology
.

Medieval Islamic science had practical purposes as well as the goal of understanding. For example, astronomy was useful for determining the

Ibn Al-Haytham, Al-Bīrūnī and others studied optics and mechanics as well as astronomy, and criticised Aristotle
's view of motion.

During the Middle Ages, Islamic science flourished across a wide area around the Mediterranean Sea and further afield, for several centuries, in a wide range of institutions.

Context and history

Islamic expansion:
  under Muhammad, 622–632
  under Rashidun caliphs, 632–661
  under Umayyad caliphs, 661–750

The Islamic era began in 622. Islamic armies eventually conquered

Islamic world.[4]

The Abbasid Caliphate, 750–1261 (and later in Egypt) at its height, c. 850

Islamic science survived the initial Christian

Safavid Empire (1501–1736), centred in Persia, where work in the arts and sciences continued.[5]

Fields of inquiry

Medieval Islamic scientific achievements encompassed a wide range of subject areas, especially

Alchemy and chemistry

The early Islamic period saw the establishment of theoretical frameworks in

mineral acids by 13th-century Latin alchemists such as pseudo-Geber.[10]

Astronomy and cosmology

al-Biruni's explanation of the phases of the moon

Astronomy became a major discipline within Islamic science. Astronomers devoted effort both towards understanding the nature of the cosmos and to practical purposes. One application involved determining the

Tables of Toledo, used by astronomers to predict the movements of the sun, moon and planets across the sky. Copernicus (1473-1543) later used some of Al-Battani's astronomic tables.[14]

Helagu's astrologer, he was given an observatory and gained access to Chinese techniques and observations. He developed trigonometry as a separate field, and compiled the most accurate astronomical tables available up to that time.[17]

Botany and agronomy

Wonders of Creation

The study of the natural world extended to a detailed examination of plants. The work done proved directly useful in the unprecedented growth of

ʿAjā'ib al-makhlūqāt (The Wonders of Creation) – contained, among many other topics, both realistic botany and fantastic accounts. For example, he described trees which grew birds on their twigs in place of leaves, but which could only be found in the far-distant British Isles.[19][18][20] The use and cultivation of plants was documented in the 11th century by Muhammad bin Ibrāhīm Ibn Bassāl of Toledo in his book Dīwān al-filāha (The Court of Agriculture), and by Ibn al-'Awwam al-Ishbīlī (also called Abū l-Khayr al-Ishbīlī) of Seville in his 12th century book Kitāb al-Filāha (Treatise on Agriculture). Ibn Bassāl had travelled widely across the Islamic world, returning with a detailed knowledge of agronomy that fed into the Arab Agricultural Revolution. His practical and systematic book describes over 180 plants and how to propagate and care for them. It covered leaf- and root-vegetables, herbs, spices and trees.[21]

Geography and cartography

Surviving fragment of the first World Map of Piri Reis (1513)

The spread of Islam across Western Asia and North Africa encouraged an unprecedented growth in trade and travel by land and sea as far away as Southeast Asia, China, much of Africa, Scandinavia and even Iceland. Geographers worked to compile increasingly accurate maps of the known world, starting from many existing but fragmentary sources.[22] Abu Zayd al-Balkhi (850–934), founder of the Balkhī school of cartography in Baghdad, wrote an atlas called Figures of the Regions (Suwar al-aqalim).[23]

Al-Idrisi (1100–1166) drew a map of the world for Roger, the Norman King of Sicily (ruled 1105-1154). He also wrote the Tabula Rogeriana (Book of Roger), a geographic study of the peoples, climates, resources and industries of the whole of the world known at that time.[25] The Ottoman admiral Piri Reis (c. 1470–1553) made a map of the New World and West Africa in 1513. He made use of maps from Greece, Portugal, Muslim sources, and perhaps one made by Christopher Columbus. He represented a part of a major tradition of Ottoman cartography.[26]

Mathematics

al-Khwarizmi
's Algebra

Islamic mathematicians gathered, organised and clarified the mathematics they inherited from ancient Egypt, Greece, India, Mesopotamia and Persia, and went on to make innovations of their own. Islamic mathematics covered algebra, geometry and arithmetic. Algebra was mainly used for recreation: it had few practical applications at that time. Geometry was studied at different levels. Some texts contain practical geometrical rules for surveying and for measuring figures. Theoretical geometry was a necessary prerequisite for understanding astronomy and optics, and it required years of concentrated work. Early in the Abbasid caliphate (founded 750), soon after the foundation of Baghdad in 762, some mathematical knowledge was assimilated by al-Mansur's group of scientists from the pre-Islamic Persian tradition in astronomy. Astronomers from India were invited to the court of the caliph in the late eighth century; they explained the rudimentary trigonometrical techniques used in Indian astronomy. Ancient Greek works such as Ptolemy's Almagest and Euclid's Elements were translated into Arabic. By the second half of the ninth century, Islamic mathematicians were already making contributions to the most sophisticated parts of Greek geometry. Islamic mathematics reached its apogee in the Eastern part of the Islamic world between the tenth and twelfth centuries. Most medieval Islamic mathematicians wrote in Arabic, others in Persian.[27][28][29]

conic sections
"

Al-Khwarizmi (8th–9th centuries) was instrumental in the adoption of the Hindu–Arabic numeral system and the development of algebra, introduced methods of simplifying equations, and used Euclidean geometry in his proofs.[30][31] He was the first to treat algebra as an independent discipline in its own right,[32] and presented the first systematic solution of linear and quadratic equations.[33]
: 14  Avicenna (c. 980–1037) contributed to mathematical techniques such as casting out nines.[37] Thābit ibn Qurra (835–901) calculated the solution to a chessboard problem involving an exponential series.[38]
decimal fractions, and with a method like Horner's to calculate roots. He calculated π correctly to 17 significant figures.[41]

Sometime around the seventh century, Islamic scholars adopted the Hindu–Arabic numeral system, describing their use in a standard type of text fī l-ḥisāb al hindī, (On the numbers of the Indians). A distinctive Western Arabic variant of the Eastern Arabic numerals began to emerge around the 10th century in the Maghreb and Al-Andalus (sometimes called ghubar numerals, though the term is not always accepted), which are the direct ancestor of the modern Arabic numerals used throughout the world.[42]

Medicine

A coloured illustration from Mansur's Anatomy, c. 1450

Islamic society paid careful attention to medicine, following a

al-Razi (c. 865–925) identified smallpox and measles, and recognized fever as a part of the body's defenses. He wrote a 23-volume compendium of Chinese, Indian, Persian, Syriac and Greek medicine. al-Razi questioned the classical Greek medical theory of how the four humours regulate life processes. He challenged Galen's work on several fronts, including the treatment of bloodletting, arguing that it was effective.[44]
al-Zahrawi (936–1013) was a surgeon whose most important surviving work is referred to as al-Tasrif (Medical Knowledge). It is a 30-volume set mainly discussing medical symptoms, treatments, and pharmacology. The last volume, on surgery, describes surgical instruments, supplies, and pioneering procedures.[45] Avicenna (c. 980–1037) wrote the major medical textbook, The Canon of Medicine.[37] Ibn al-Nafis (1213–1288) wrote an influential book on medicine; it largely replaced Avicenna's Canon in the Islamic world. He wrote commentaries on Galen and on Avicenna's works. One of these commentaries, discovered in 1924, described the circulation of blood through the lungs.[46][47]

Optics and ophthalmology

The eye according to Hunayn ibn Ishaq, c. 1200
Ibn al-Haytham (Alhazen), (965–1039 Iraq). A polymath, sometimes considered the father of modern scientific methodology due to his emphasis on experimental data and on the reproducibility of its results.[48][49]

Optics developed rapidly in this period. By the ninth century, there were works on physiological, geometrical and physical optics. Topics covered included mirror reflection. Hunayn ibn Ishaq (809–873) wrote the book Ten Treatises on the Eye; this remained influential in the West until the 17th century.[50]

Abbas ibn Firnas (810–887) developed lenses for magnification and the improvement of vision.[51]
Ibn Sahl (c. 940–1000) discovered the law of refraction known as Snell's law. He used the law to produce the first Aspheric lenses that focused light without geometric aberrations.[52][53]

In the eleventh century

Renaissance scientists.[59][60][61][62][63][64]

Pharmacology

Ibn Sina teaching the use of drugs. 15th-century Great Canon of Avicenna

Advances in

clinical trials for determining the efficacy of medical drugs and substances.[66]

Physics

Ahmad ibn Mūsā ibn Shākir
's treatise on mechanical devices, c. 850

The fields of physics studied in this period, apart from optics and astronomy which are described separately, are aspects of

Newton's first law of motion, on inertia.[68] As a non-Aristotelian suggestion, it was essentially abandoned until it was described as "impetus" by Jean Buridan (c. 1295–1363), who was influenced by Ibn Sina's Book of Healing.[67]

In the Shadows,

Abū Rayḥān al-Bīrūnī (973–1048) describes non-uniform motion as the result of acceleration.[69] Ibn-Sina's theory of mayl tried to relate the velocity and weight of a moving object, a precursor of the concept of momentum.[70] Aristotle's theory of motion stated that a constant force produces a uniform motion; Abu'l-Barakāt al-Baghdādī (c. 1080 – 1164/5) disagreed, arguing that velocity and acceleration are two different things, and that force is proportional to acceleration, not to velocity.[71]

Ibn Ma'ruf
.

Zoology

Page from the Kitāb al-Hayawān (Book of Animals) by Al-Jahiz. Ninth century

Many classical works, including those of Aristotle, were transmitted from Greek to Syriac, then to Arabic, then to Latin in the Middle Ages. Aristotle's zoology remained dominant in its field for two thousand years.[75] The Kitāb al-Hayawān (كتاب الحيوان, English: Book of Animals) is a 9th-century Arabic translation of History of Animals: 1–10, On the Parts of Animals: 11–14,[76] and Generation of Animals: 15–19.[77][78]

The book was mentioned by

Al-Kindī (died 850), and commented on by Avicenna (Ibn Sīnā) in his The Book of Healing. Avempace (Ibn Bājja) and Averroes (Ibn Rushd) commented on and criticised On the Parts of Animals and Generation of Animals.[79]

Significance

Muslim scientists helped in laying the foundations for an

scientific revolution like that in Early modern Europe, but such external comparisons are probably to be rejected as imposing "chronologically and culturally alien standards" on a successful medieval culture.[2]

See also

References

  1. .
  2. ^ a b c McClellan and Dorn 2006, pp.103–115
  3. ^ "Al-Kindi". Stanford Encyclopedia of Philosophy. 17 March 2015.
  4. ^ a b Robinson, Francis, ed. (1996). The Cambridge Illustrated History of the Islamic World. Cambridge University Press. pp. 228–229.
  5. ^ Turner 1997, p.7
  6. ^ Turner 1997, Table of contents
  7. .
  8. .
  9. .
  10. ^ a b Karpenko, Vladimír; Norris, John A. (2002). "Vitriol in the History of Chemistry". Chemické listy. 96 (12): 997–1005.
  11. .
  12. . Vol. II, pp. 41–42.
  13. ^ Turner 1997, pp.59–116
  14. ^ Masood 2009, pp.74, 148–150
  15. ^ Linton (2004), p.97). Owing to the unreliability of the data al-Zarqali relied on for this estimate, its remarkable accuracy was fortuitous.
  16. ^ Masood 2009, pp.73–75
  17. ^ Masood 2009, pp.132–135
  18. ^ a b c Turner 1997, pp.138–139
  19. ^ Fahd, Toufic, Botany and agriculture, p. 815, in Morelon & Rashed 1996, pp.813–852
  20. ^ Turner 1997, pp.162–188
  21. ^ "Ibn Baṣṣāl: Dīwān al-filāḥa / Kitāb al-qaṣd wa'l-bayān". The Filaha Texts Project: The Arabic Books of Husbandry. Retrieved 11 April 2017.
  22. ^ Turner 1997, pp.117–130
  23. .
  24. .
  25. ^ Masood 2009, pp.79–80
  26. ^ Turner 1997, pp.128–129
  27. .
  28. ^ Turner 1997, pp.43–61
  29. JSTOR 604119
    .
  30. .
  31. ^ Masood 2009, pp.139–145
  32. S2CID 60770737
    , page 263–277: "In a sense, al-Khwarizmi is more entitled to be called "the father of algebra" than Diophantus because al-Khwarizmi is the first to teach algebra in an elementary form and for its own sake, Diophantus is primarily concerned with the theory of numbers".
  33. ^ Maher, P. (1998). From Al-Jabr to Algebra. Mathematics in School, 27(4), 14–15.
  34. ^ Masood 2009, pp.49–52
  35. S2CID 123537702
    .
  36. .
  37. ^ a b Masood 2009, pp.104–105
  38. ^ Masood 2009, pp.48–49
  39. ^ Masood 2009, pp.148–149
  40. ^ Masood 2009, pp.5, 104, 145–146
  41. ^ O'Connor, John J.; Robertson, Edmund F., "Ghiyath al-Din Jamshid Mas'ud al-Kashi", MacTutor History of Mathematics archive, University of St Andrews.
  42. ^ Turner 1997, pp.131–161
  43. ^ Masood 2009, pp.74, 99–105
  44. ^ Masood 2009, pp.108–109
  45. ^ Masood 2009, pp.110–111
  46. ^ Turner 1997, pp.131–139
  47. ^ Al-Khalili, Jim (4 January 2009). "The 'first true scientist'". BBC News. Ibn al-Haytham is regarded as the father of the modern scientific method.
  48. ISBN 978-0-393-70607-9. Alhazen (or Al-Haytham; 965–1039 CE) was perhaps one of the greatest physicists of all times and a product of the Islamic Golden Age or Islamic Renaissance (7th–13th centuries). He made significant contributions to anatomy, astronomy, engineering, mathematics
    , medicine, ophthalmology, philosophy, physics, psychology, and visual perception and is primarily attributed as the inventor of the scientific method, for which author Bradley Steffens (2006) describes him as the "first scientist".
  49. ^ Masood 2009, pp.47–48, 59, 96–97, 171–72
  50. ^ Masood 2009, pp.71–73
  51. ^ K. B. Wolf, "Geometry and dynamics in refracting systems", European Journal of Physics 16, p. 14–20, 1995.
  52. ^ R. Rashed, "A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses", Isis 81, p. 464–491, 1990
  53. ^ Dallal, Ahmad (2010). Islam, Science, and the Challenge of History. Yale University Press. pp. 38–39.
  54. OCLC 1676198
    .
  55. ^ El-Bizri, Nader (2005). A Philosophical Perspective on Alhazen's Optics. Cambridge University Press. pp. 189–218. {{cite book}}: |work= ignored (help)
  56. ^ El-Bizri, Nader (30 March 2011). "Ibn al-Haytham". Muslim Heritage. Retrieved 9 July 2017.
  57. ^ Masood 2009, pp.173–175
  58. . Retrieved 22 October 2014.
  59. Toomer p.464: "Schramm sums up [Ibn Al-Haytham's] achievement in the development of scientific method."
  60. ^ "International Year of Light - Ibn Al-Haytham and the Legacy of Arabic Optics".
  61. ^ Al-Khalili, Jim (4 January 2009). "The 'first true scientist'". BBC News. Retrieved 24 September 2013.
  62. ^ Gorini, Rosanna (October 2003). "Al-Haytham the man of experience. First steps in the science of vision" (PDF). Journal of the International Society for the History of Islamic Medicine. 2 (4): 53–55. Retrieved 25 September 2008.
  63. ^ Levey, M. (1973). Early Arabic Pharmacology. E. J. Brill.
  64. .
  65. ^ .
  66. .
  67. ^ "Biography of Al-Biruni". University of St. Andrews, Scotland.
  68. ^ Nasr, S. H.; Razavi, M. A. (1996). The Islamic Intellectual Tradition in Persia. Routledge.
  69. .
  70. ^ Masood 2009, pp.161–163
  71. ^ Lindberg, David (1978). Science in the Middle Ages. University of Chicago Press. pp. 23, 56.
  72. ^ Selin, Helaine, ed. (1997). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Kluwer Academic Publishers. pp. 151, 235, 375.
  73. ISBN 978-90-04-25034-5. {{cite book}}: |work= ignored (help
    )
  74. ^ Kruk, R., 1979, The Arabic Version of Aristotle's Parts of Animals: book XI–XIV of the Kitab al-Hayawan, Royal Netherlands Academy of Arts and Sciences, Amsterdam-Oxford 1979.
  75. .
  76. ^ Kruk, R., 2003, "La zoologie aristotélicienne. Tradition arabe", DPhA Supplement, 329–334
  77. .
  78. .

Notes

  1. ^ Lindberg & Shank 2013, chapters 1–5 cover science, mathematics and medicine in Islam.

Sources

Further reading


External links