James Bjorken

Source: Wikipedia, the free encyclopedia.

James Bjorken
SLAC
Doctoral studentsDavison Soper
Helen Quinn

James Daniel "BJ" Bjorken (born 1934) is an American

Fermi National Accelerator Laboratory
(1979–1989).

He was awarded the Dirac Medal of the ICTP in 2004; and, in 2015, the Wolf Prize in Physics and the EPS High Energy and Particle Physics Prize.[3]

Early life and education

James Bjorken's father, J. Daniel Bjorken, was an immigrant from Sweden near

Lake Siljan. He changed his surname from "Björkén" to Bjorken upon arriving in the US; he moved to Chicago to work as an electrical engineer, which is where he met his future wife, Edith. James Bjorken grew up in Chicago and enjoyed mathematics, chemistry, the French horn, and watching the Chicago Cubs play at Wrigley Field. After graduating from Maine East High School in 1952, he decided to attend Massachusetts Institute of Technology (MIT) over the University of Chicago. Despite being offered more financial aid to attend the University of Chicago, his parents advised him that he should move further away to find his independence.[4]

At MIT, he quickly decided to major in physics; one of the main reasons was his enjoyment of the lectures that Hans Mueller gave. Another of his influences at MIT was Sidney Drell, who became his mentor. After graduating in 1956, he attended Stanford University, graduating with his PhD in 1959 and staying on as a postdoctoral researcher for several years.[4]

Work

Bjorken discovered in 1968 what is known as

light-cone scaling (or Bjorken scaling), a phenomenon in the deep inelastic scattering of light on strongly interacting particles, known as hadrons (such as protons and neutrons
): Experimentally observed hadrons behave as collections of virtually independent point-like constituents when probed at high energies.

Properties of these hadrons scale, that is, they are determined not by the absolute energy of an experiment, but, instead, by dimensionless kinematic quantities, such as a scattering angle or the ratio of the energy to a momentum transfer. Because increasing energy implies potentially improved spatial resolution, scaling implies independence of the absolute resolution scale, and hence effectively point-like substructure.

This observation was critical to the recognition of quarks as actual elementary particles (rather than just convenient theoretical constructs), and led to the theory of strong interactions known as quantum chromodynamics, where it was understood in terms of the asymptotic freedom property. In Bjorken's picture, the quarks become point-like, observable objects at very short distances (high energies), shorter than the size of the hadrons.

Bjorken also discovered the Bjorken

sum rule,[5][6] the prototypical QCD spin sum rule. It states that in the Bjorken scaling domain, the integral of the spin structure function of the proton minus that of the neutron is proportional to the axial charge of the nucleon
. Specially: , where is the Bjorken scaling variable, is the first spin structure function of the proton (neutron), and is the nucleon axial charge that characterizes the neutron β-decay. The sum rule was experimentally verified within better than a 10% precision.[7]

Bjorken was also among the first to point out to the phenomena of jet quenching in heavy ion collisions in 1982.

SLAC, in which quarks were seen for the first time. The general idea, with small logarithmic modifications, is explained in quantum chromodynamics by "asymptotic freedom
".

Bjorken co-authored, with

quantum fields
.

Publications

Books

Selected papers

  • J.D. Bjorken (1982). "Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Excitation of High pT Jets in Hadron-Hadron Collisions". FERMILAB-Pub-82/59-THY.

Full list of papers

INSPIRE-HEP -- Bjorken

Notes

References

External links

Media related to James Bjorken at Wikimedia Commons