Japanese space program

Source: Wikipedia, the free encyclopedia.

Japanese space program
日本の宇宙開発
Launch of the Japanese rocket H-IIA
First flight12 April 1955 (Pencil Rocket)
Successes60
Failures2
Partial failures1

The Japanese space program (Japanese: 日本の宇宙開発) originated in the mid-1950s as a research group led by Hideo Itokawa at the University of Tokyo. The size of the rockets produced gradually increased from under 30 cm (12 in) at the start of the project, to over 15 m (49 ft) by the mid-1960s. The aim of the original research project was to launch a man-made satellite.

By the 1960s, two organizations, the

Japan Aerospace Exploration Agency
(JAXA) in 2003.

History

After

Tokyo University established an aviation research group at the Institute of Industrial Science at the university. That group succeeded in horizontally launching the Pencil Rocket on 12 April 1955 in Kokubunji, Tokyo. The rocket was 23 cm (9.1 in) long and had a diameter of 1.8 cm (0.71 in).[3][4]

The Pencil Rocket was the first experiment of its kind in Japan. Initially, the focus was on the development of rocket-powered aircraft, not space exploration. However, following Japan's participation in the International Geophysical Year, the focus of the rocket project shifted towards space engineering.[5]

Early development

Pencil rocket exhibit at the National Museum of Nature and Science

Iterations of the Pencil Rocket eventually increased in size to such a degree that experimentation within Kokubunji was deemed too dangerous. Therefore, the launch site was moved to Michikawa Beach in Akita Prefecture.[6] Following the Pencil Rocket, the larger Baby Rocket was developed, which reached an altitude of 6 km (3.7 mi). After the Baby Rocket, two further rocket projects were carried out: a rockoon-type rocket launched from a balloon and a ground-launched rocket. The development of a rockoon turned out to be too difficult, and that experiment was eventually halted.[1][7] Among several versions of ground-launched rocket prototypes, the Kappa rocket was one of the most successful, gradually reaching higher altitudes. Due to inadequate funding, the rockets were handmade and the tracking radar was operated manually. Production was reliant on trial and error.

In 1958, the Kappa 6 rocket reached an altitude of 40 km (25 mi) and the collected data allowed Japan to participate in the International Geophysical Year. In 1960, the Kappa 8 rocket exceeded an altitude of 200 km (120 mi). The development of larger rockets necessitated a launch site with a large

new launch site on the Pacific coast was created, this time at Uchinoura in Kagoshima Prefecture
.

Launch of Ohsumi

Ohsumi, the first Japanese satellite

In the 1960s, Japanese space research and development was primarily focused on satellite delivery systems. A tentative plan was hatched to develop successors to the Kappa rockets, to be called Lambda rockets, for satellite delivery. The Science and Technology Agency subsequently focused its studies of Kappa launches on gathering technical information that would allow the new rockets to achieve higher altitudes.

In 1963, the government began a gradual increase in spending on space development. That year, the Science and Technology Agency restructured the National Aeronautical Laboratory (NAL) into the National Aerospace Laboratory. The new NAL was to be the center for research on space technology. However, it soon became clear that the NAL had insufficient resources to develop both aeronautical and space technology simultaneously. As a result, in 1964, the Science and Technology Agency was split, with NAL to work only on aviation technology, and a newly created Space Development Promotion Headquarters to handle space technology.[1]

In 1964, at the urging of Hideo Itokawa, the University of Tokyo established the Institute of Space and Astronautical Science.[8] Although development on the Lambda rockets proceeded slowly, there were incremental improvements over the next couple of years; such as the new capability to reach an altitude of 2,000 kilometres (1,200 mi), getting closer to that required for the launch of a satellite. At this time, however, political issues delayed development. There was, for instance, a controversy involving rocket guidance technologies, which some considered a military, not civilian, matter. Further aggravation was caused by the continued failure of the Lambda initiative, which lost four rockets in orbit.[1] The failure was reportedly caused by a shock (from the sudden combustion of residual fuel) resulting in parts colliding.

The first successful Japanese satellite launch occurred on 11 February 1970 with the launch of the Ohsumi by an unguided L-4S rocket No. 5.[9] The launch of Ohsumi was an important demonstration of technological cooperation with the United States, particularly in the development of high efficiency batteries that did not lose power at high temperatures.[10]

Successful development

Model of the cancelled indigenous four stage solid-propellant Q rocket[11]

In 1969, the Space Development Promotion Headquarters was reorganized as the

National Space Development Agency
, which was a separate agency from ISAS. Each of the agencies was developing their own rockets independently. NASDA, for example, was focused on rockets to launch larger satellites with practical and commercial applications, while ISAS launched smaller scientific satellites.

After the agency reorganization, Japan started to develop more precise rockets in the 1970s. Although the first M-4S rocket failed, the next versions of it succeeded in orbit, with three satellite aircraft eventually becoming the foundation of the Mu rocket family. Afterwards, the Mu rockets were changed from four stages to three stages to simplify the system, and enhancements were made to M-3C. All stages were able to work with the M-3S rockets, and this technology resulted in a string of successful satellite launches into orbit, reaching higher altitudes each time.

M-3SII rocket reached its completion. The rocket was the first solid-propellant rocket of its kind, and left Earth's gravity carrying the Halley Armada satellites Sakigake and Suisei
. M-3SII established the technology for the satellites that were being launched one after another. The
Himawari 1 was launched using an American rocket.[13] The satellites Sakura and Yuri
were later also launched by American rockets. The N-I rocket used technology acquired from manufacturing technology and management techniques only, but by frequently keeping records, NASDA gradually acquired more technology and the rate of satellite production in Japan has increased since the Himawari 2.

Since then, in order to meet the demands of larger satellites, NASDA started the development of the

H-I rocket made use of the liquid fuel LE-5 rocket engine in the second stage.[13]
The LE-5 was characterized by its use of high-efficiency liquid hydrogen and oxygen propellant and the ability to re-ignite, which made it more capable than the N-II upper stage. The H-I rocket was able to launch objects exceeding 500 kg into geostationary orbit.

The rockets NASDA produced were used to launch many commercial satellites, the rapidly increasing number of communication satellites and broadcasting satellites, weather satellites, and so on. Nine

H-I rockets were manufactured, all of which have been successfully launched. This was the first time Japan had successfully launched multiple satellites simultaneously.[13]

Japan did not develop the technology for crewed space flight. Mamoru Mohri, in cooperation with NASA, was originally scheduled to be the first Japanese to go into space in 1990 but due to circumstances with the Shuttle, Toyohiro Akiyama, a civilian, became the first Japanese national to go into space aboard the Soyuz TM-11.[14] Mohri eventually flew on STS-47 in 1992.

Large-scale rockets and related challenges

M-V rocket launch rehearsal

After successfully developing the

H-II rocket.[1]

Also, in 1989 the Institute of Space and Astronautical Science made changes to the Space Exploration Policy Outline, enabling the development of large-scale rockets, with proper research into solid-propellant rockets starting in 1990, with rocket designs capable of delivering payloads for interplanetary exploration. Despite many delays caused by problems developing an engine for this type of rocket, the new

M-3SII model. From this point onward a period of inactivity for rocket research started to manifest, causing the launch of Nozomi
, a mission intended to study Mars, to be postponed for two years.

Japan continued in this fashion to progress in developing new rockets, that is until 1990 when the USA trade policy "

Himawari 5 had to be purchased completely from America instead of being manufactured in Japan.[1] Many other types of spacecraft were launched from within the country, for example, environmental observation satellites such as Midori,[15] and astronomical or experimental spacecraft like HALCA
, an activity which had great success overall. However, because of the predominance of commercial satellites being launched from overseas, to this date, Japan still hasn't been able to accumulate a track-record of commercial launches of any kind.

The late 1990s and early 2000s presented many obstacles for the newly developed rockets. Both flight number 5 and 8 of the H-II rocket failed at launch, as well as the launch of the fourth M-V rocket.

Japan Aerospace Exploration Agency (JAXA), which was officially established on October 1, 2003.[16]

HOPE project

HOPE, the H-2 Orbiting Plane, Experimental was a program to develop a spaceplane to be launched on the H-II vehicle.[17] The developmental vehicle was called HOPE-X, an uncrewed system for flight testing and systems validation, to lead up to the operational HOPE vehicle, which would have been Japan's first crew-carrying spacecraft, a 4-person 22-metric-ton (49,000 lb) design. Both were to be launched on Japan's H-II launcher, although upgrades in performance were required to launch the larger crew-carrying version.

In 1997, the HOPE project was downscoped to be simply an uncrewed cargo vehicle for launches to the International Space Station, about the same time as the H-II launcher was downscaled to the smaller H-IIA. The HOPE-X was to be launched on the H-IIA vehicle. The project was cancelled in 2003,[17] with aerodynamic tests of models, but before any vehicle was completed for launch.

21st century

Reentry of Hayabusa

The H-IIA is a derivative of the earlier H-II rocket, substantially redesigned to improve reliability and minimize costs. Although the sixth H-IIA launch failed shortly after the founding of JAXA, a series of successful launches followed afterwards. In 2009 the H-IIB rocket, which was developed to have a higher payload capacity than H-IIA, was successfully launched to send equipment and supplies to the International Space Station.[18] In order to launch small satellites more easily and more cheaply than the M-V solid fuel rocket, a successor known as Epsilon was also developed.[19] The Epsilon rocket then had its first successful launch in 2013.[20] These developments in Japan are pursuing the possibility of re-launching business.

Many satellites and experimental spacecraft to launch satellites have been produced within Japan, leading to strong technical capabilities in this field. The

Himawari 7, which allowed costs to be reduced and made it possible to launch domestically produced weather satellites again. There have been plans to launch a small scientific satellite lot, with the aim of deploying inexpensive custom-built satellites.[21]

Prior to

reconnaissance satellites were never launched. Japanese space law was amended in 2008 to allow the deployment of military satellites for reconnaissance and missile defense only. Some of the budget was diverted from the scientific space exploration budget for these plans, which put pressure on other technologies.[22]

The biggest success in recent years was the

Hayabusa sample return mission. Hayabusa was launched in 2003 from Uchinoura Space Center aboard an M-V rocket, returning to Earth in 2010 with samples from 25143 Itokawa.[23] While there were issues with deploying a probe, Hayabusa ultimately managed to acquire a number of samples from the asteroid.[24]
This made Hayabusa the first successful asteroid sample return mission.

The Akatsuki spacecraft was launched in May 2010, aiming to become Japan's first Venus probe in December of that year. The first attempt at orbital insertion failed, but the probe was able to make a second attempt and succeed in December 2015.[25]

In June 2014, the Ministry of Education, Culture, Sports, Science and Technology said it was considering a space mission to Mars. In a ministry paper, it indicated uncrewed exploration, crewed missions to Mars, and long-term lunar settlement as objectives for which international cooperation and support were going to be sought.[26]

In December 2021, Prime Minister Fumio Kishida said during a government meeting on space development strategy "We are aiming to realize a lunar landing by a Japanese astronaut in the latter half of the 2020s".[27] Japan will join the Artemis program to advance lunar exploration.[27]

In February 2023, JAXA was forced to destroy a rocket shortly after liftoff as the rocket experienced reduced velocity. The launch of the H3 rocket had previously been delayed due to faulty rocket boosters.[28]

Organizations

Japan's space development began as a research group in the Institute of Industrial Science, University of Tokyo, which itself had its origins in the Second Faculty of Engineering, a pre-World War II department of the same university focused on aircraft development. The National Aerospace Laboratory of Japan (NAL) was launched in 1963 to develop further aircraft technologies, and in 1964 the Tokyo research group branched off as the Tokyo Institute of Aerospace, becoming its own separate department inside the university. In 1969, the National Space Development Agency of Japan (NASDA) was established, while at the same time, the National Aerospace Laboratory started to specialize in scientific research aimed at technology exports. In 1981, NAL was reorganized and became the National Institute of Space and Astronautical Science (ISAS).

The momentum carried by governmental reforms and administrative changes during the 1990s and early 2000s, aggravated as well by the multiple failed launches of Japanese rockets, made it necessary to strengthen cooperation between the different space organizations, prompting the unification of these institutions under the

Japan Aerospace Exploration Agency (JAXA).[16][29] Currently, JAXA operates as part of the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
, and is the main entity responsible for Japan's space development.

Rocket ranges

Tanegashima Space Center, Tanegashima, Japan's largest rocket range

There are two facilities in the country with the ability to launch satellites: the

NASDA are launched from Tanegashima, while the Uchinoura Space Center serves as a launching site for solid-propellant rockets, which used to be managed by ISAS
.

Other facilities used to launch test rockets include:

Memorial monument of Akita Rocket Test Site, Japan's first rocket range in Akita Prefecture

The Akita Rocket Test Site was used as a test launch facility by the University of Tokyo from 1955 until 1965. The site was used for the last time by the National Aerospace Laboratory, and nowadays nothing remains of the facility except for a stone monument commemorating the site.

The Weather Rocket Station (気象ロケット観測所, kishou roketto kansokujo, weather rocket observation post), also referred to as Ryori, was used to launch a total of 1,119

atmospheric air
quality.

The Niijima Test Range (新島試験場, Niijima shikenjou), located on the southern tip of Niijima Island, was established in March 1962 by the Technical Research and Development Institute of the Defense Agency. The Science and Technology Agency rented the land and facilities from the Defense Agency and conducted eighteen small-scale rocket launch tests between 1963 and 1965.[30][31] Larger rockets were not suited to be tested there due to the narrowness of the range. In 1969, both the Defense Agency and local residents opposed the newly-formed National Space Development Agency of Japan (NASDA)'s project to build its own rocket test range at Niijima. Instead, the Tanegashima Space Center was built.[30]

Japan Aerospace Exploration Agency, but utilization by private companies is also permitted, as shown by the several launch tests of the CAMUI Rocket conducted between March 2002 and January 2003.[32]

Japan also operates the Antarctic Showa Station. Between 1970 and 1985, rockets were launched by 54 groups for purposes such as ozone measurements and auroral observation.

Companies involved

Peaceful development

The Japanese space program has been developed for peaceful goals, completely separate from military technology. Therefore, the program's purposes are generally commercial or scientific.[citation needed]

According to JAXA's long-term vision, aerospace technology is to be used for:

  • Natural disasters, as a support system for environmental issues
  • Planetary sciences, and technical research for the advancement of asteroid exploration
  • Improved reliability for stable transportation, related research and crewed space activity
  • Key industries[33]

See also

References

  1. ^ .
  2. ^ Mercado, Stephen C (September 1995). "The YS-11 Project and Japan's Aerospace Potential". JPRI. Archived from the original on October 28, 2019. Retrieved July 2, 2015.
  3. ^ 国分寺市からロケット発射 [Shooting a rocket from Kokubunji] (in Japanese). Kokubunji, Tokyo. Archived from the original on January 20, 2011. Retrieved January 17, 2011.
  4. ^ Ley, Willy (December 1967). "Astronautics International". For Your Information. Galaxy Science Fiction. pp. 110–120.
  5. ^ ある新聞記事 [Newspaper articles] (in Japanese). Institute of Space and Astronautical Science. Retrieved January 30, 2011.
  6. Yurihonjō, Akita. Archived from the original
    on July 19, 2011. Retrieved January 17, 2011.
  7. ^ 六ヶ所村のミニ地球 [Rokkasho mini earth] (in Japanese). Space Association. Archived from the original on January 11, 2013. Retrieved January 25, 2011.
  8. ^ 袁小兵 [Yuka Kohei] (2011). 日本太空事业发展探析. [An Analysis of the Development of Japan's Space Industry]. 国际观察 [International Review] (in Japanese). 6: 55–61, page 56. Archived from the original on June 2, 2020.
  9. ^ "lambda glory". ISAS. Retrieved January 17, 2011.
  10. ^ "The National Science Museum, February 7 "Ohsumi" 40th Anniversary Symposium". Astro Arts. Retrieved January 17, 2011.
  11. ^ . Retrieved January 21, 2020.
  12. ^ "Subcommittee No. 2 on Space Development Special Committee of Science and Technology Promotion Association 051 Diet". Archived from the original on March 17, 2012. Retrieved January 25, 2011.
  13. ^ .
  14. ^ "Akiyama". Encyclopedia Astronautica. Archived from the original on December 29, 2008. Retrieved November 29, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  15. ^ Ministry Shima Hara. "Satellite "Midori" marine observation". National Institute for Environmental Studies. Retrieved January 25, 2011.
  16. ^ a b "Integration of three space agencies". Research and Development Bureau Ministry of Education. June 14, 2003. Archived from the original on January 27, 2013. Retrieved January 25, 2011.
  17. ^ a b Jos Heyman, "Spaceplanes That Never Were... Archived February 3, 2022, at the Wayback Machine," MilSat Magazine, Sept. 2016.
  18. ^ "Japan's space freighter in orbit". Jonathan Amos. BBC. August 10, 2009. Retrieved September 10, 2009.
  19. ^ "Ipushironroketto". Japan Aerospace Exploration Agency. Retrieved January 17, 2011.
  20. ^ "Epsilon rocket all aces this time". Asahi Shimbun. Archived from the original on September 23, 2013. Retrieved September 14, 2013.
  21. ^ "SPRINT (small scientific satellite) Outline Planning Series" (PDF). Japan Aerospace Exploration Agency. July 21, 2010. Retrieved January 26, 2011.
  22. ^ Shinya Matsuura Susumu (May 31, 2006). "lower costs at a crossroads in MV". nikkeiBPnet. Archived from the original on August 15, 2011. Retrieved January 26, 2011.
  23. ^ ""Hayabusa" feedback". The Nikkei. June 14, 2010. Retrieved January 17, 2011.
  24. ^ "Spacecraft Successfully Returns Asteroid Dust". Science. Archived from the original on November 20, 2010. Retrieved January 29, 2011.
  25. ^ "In Depth - Akatsuki". NASA. Retrieved June 26, 2022.
  26. ^ "Japanese hope to build on Mars". The Tokyo News.Net. Archived from the original on June 2, 2014. Retrieved June 2, 2014.
  27. ^ a b "Japan, US to cooperate on Moon landing by Japanese astronaut". The Mainichi. May 19, 2022. Archived from the original on May 19, 2022.
  28. ^ "Japan forced to destroy flagship H3 rocket in failed launch". BBC. March 7, 2023. Retrieved March 7, 2023.
  29. ^ "Ministry of Education, emphasis on efficient integration prospect 15 year space development agency three, years 30". Physical Society Division High School in Nara, Rika. Sankei. June 14, 2003. Archived from the original on September 4, 2010. Retrieved January 25, 2011.
  30. ^ a b 札幌試験場視察 [Visit to Sapporo Proving Ground] (PDF). Electronic Equipment Research Institute / Advanced Technology Promotion Center Headquarters Kobo [newsletter] (in Japanese). No. 503. General Affairs Division, General Affairs Department, Technology Research Headquarters, Ministry of Defense. March 8, 2010. p. 2. Archived from the original (PDF) on March 8, 2016.
  31. ^ "Niijima". Encyclopedia Astronautica. Archived from the original on November 21, 2019.
  32. ^ Nagata, Harunori (February 7, 2004). "The Forefront of Space Science: Hybrid Rocket "CAMUI"". Institute of Space and Astronautical Science (ISAS). p. 2. Archived from the original on October 1, 2006.
  33. ^ "JAXA2025 / long-term vision". Japan Aerospace Exploration Agency. Retrieved January 17, 2011.

External links