Keratinocyte

Source: Wikipedia, the free encyclopedia.
Micrograph of keratinocytes, basal cells and melanocytes in the epidermis
Keratinocytes (stained green) in the skin of a mouse

Keratinocytes are the primary type of

epidermis, the outermost layer of the skin. In humans, they constitute 90% of epidermal skin cells.[1] Basal cells in the basal layer (stratum basale) of the skin are sometimes referred to as basal keratinocytes.[2]
Keratinocytes form a barrier against environmental damage by . A number of structural
antimicrobial peptides
contribute to maintain the important barrier function of the skin. Keratinocytes differentiate from epidermal
corneocytes and eventually being shed,[3][4][5][6] which happens every 40 to 56 days in humans.[7]

Function

The primary function of keratinocytes is the formation of a barrier against environmental damage by heat, UV radiation, dehydration, pathogenic bacteria, fungi, parasites, and viruses.

Pathogens invading the upper layers of the epidermis can cause keratinocytes to produce

T-lymphocytes, and dendritic cells to the site of pathogen invasion.[8]

Structure

A number of

cornification), in which the keratinocytes produce more and more keratin and undergo terminal differentiation. The fully cornified keratinocytes that form the outermost layer are constantly shed off and replaced by new cells.[3]

Cell differentiation

Epidermal stem cells reside in the lower part of the epidermis (stratum basale) and are attached to the basement membrane through

stem cells and their differentiated progeny are organized into columns named epidermal proliferation units.[5]

During this differentiation process, keratinocytes permanently withdraw from the cell cycle, initiate expression of epidermal differentiation markers, and move suprabasally as they become part of the stratum spinosum, stratum granulosum, and eventually corneocytes in the stratum corneum.

Corneocytes are keratinocytes that have completed their differentiation program and have lost their

organelles.[6] Corneocytes will eventually be shed off through desquamation
as new ones come in.

At each stage of differentiation, keratinocytes express specific

keratins, such as keratin 1, keratin 5, keratin 10, and keratin 14, but also other markers such as involucrin, loricrin, transglutaminase, filaggrin, and caspase 14
.

In humans, it is estimated that keratinocytes

turnover time is 8–10 days.[9]

Factors promoting keratinocyte differentiation are:

Since keratinocyte differentiation inhibits keratinocyte proliferation, factors that promote keratinocyte proliferation should be considered as preventing differentiation. These factors include:

Interaction with other cells

Within the epidermis keratinocytes are associated with other cell types such as

IL-1β secretion.[citation needed
]

Keratinocytes contribute to protecting the body from

Role in wound healing

Wounds to the skin will be repaired in part by the migration of keratinocytes to fill in the gap created by the wound. The first set of keratinocytes to participate in that repair come from the bulge region of the hair follicle and will only survive transiently. Within the healed epidermis they will be replaced by keratinocytes originating from the epidermis.[29][30]

At the opposite, epidermal keratinocytes, can contribute to de novo hair follicle formation during the healing of large wounds.[31]

Functional keratinocytes are needed for tympanic perforation healing.[32]

Sunburn cells

A sunburn

keratinization, and has been described as an example of apoptosis.[33][34]

Aging

With age, tissue homeostasis declines partly because stem/progenitor cells fail to self-renew or differentiate. DNA damage caused by exposure of stem/progenitor cells to reactive oxygen species (ROS) may play a key role in epidermal stem cell aging. Mitochondrial superoxide dismutase (SOD2) ordinarily protects against ROS. Loss of SOD2 in mouse epidermal cells was observed to cause cellular senescence that irreversibly arrested proliferation in a fraction of keratinocytes.[35] In older mice, SOD2 deficiency delayed wound closure and reduced epidermal thickness.[35]

Civatte body

Civatte body

A Civatte body (named after the French dermatologist Achille Civatte, 1877–1956)

See also

References

  1. ISBN 978-0-632-06429-8. Archived from the original
    on 2020-05-20. Retrieved 2010-06-01.
  2. on 2010-10-11. Retrieved 2010-06-01.
  3. ^ . Throughout life, the dead keratinized cells of the cornified layer are shed (humans lose about 1.5 grams of these cells each day*) and are replaced by new cells, the source of which is the mitotic cells of the Malpighian layer. Pigment cells (melanocytes) from the neural crest also reside in the Malpighian layer, where they transfer their pigment sacs (melanosomes) to the developing keratinocytes.
  4. ^ .
  5. ^ .
  6. ^ .
  7. ^ .
  8. OCLC 933586700.{{cite book}}: CS1 maint: location missing publisher (link
    )
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. ^ .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. ^ Brenner M; Hearing VJ. (May–June 2008). "The Protective Role of Melanin Against UV Damage in Human Skin".
    PMID 18435612
    .
  29. .
  30. .
  31. .
  32. ^ Y Shen, Y Guo, C Du, M Wilczynska, S Hellström, T Ny, Mice Deficient in Urokinase-Type Plasminogen Activator Have Delayed Healing of Tympanic Membrane Perforations, PLOS ONE, 2012
  33. ^ Young AR (June 1987). "The sunburn cell".
    PMID 3317295
    .
  34. ^ Sheehan JM, Young AR (June 2002). "The sunburn cell revisited: an update on mechanistic aspects".
    S2CID 21184034
    .
  35. ^ .
  36. .
  37. ^ .

External links

  • Tang L, Wu JJ, Ma Q, et al. (July 2010). "Human lactoferrin stimulates skin keratinocyte function and wound re-epithelialization". The British Journal of Dermatology. 163 (1): 38–47.
    S2CID 2387064
    .