Khorasan wheat

Source: Wikipedia, the free encyclopedia.

Khorasan wheat
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Pooideae
Genus: Triticum
Species:
T. turanicum
Binomial name
Triticum turanicum
Synonyms[1]
  • Gigachilon polonicum subsp. turanicum (Jakubz.) Á.Löve
  • Triticum durum subsp. turanicum (Jakubz.) L.B.Cai
  • T. orientale Percival (nom. illeg.)
  • T. percivalianum Parodi
  • T. percivalii E.Schiem.
  • T. turgidum subsp. turanicum (Jakubz.) Á.Löve &
    D.Löve
Triticum turgidum subsp. turanicum

Khorasan wheat or Oriental wheat (Triticum turgidum ssp. turanicum also called Triticum turanicum) is a

tetraploid wheat species.[2] The grain is twice the size of modern-day wheat
, and has a rich, nutty flavor.

Taxonomy

Original botanical identifications were uncertain. The variety is a form of Triticum turgidum subsp. turanicum (also known as Triticum turanicum), usually called

T. polonicum, which would explain past difficulties in arriving at a certain classification.[3]

Life form

As an

vitamins and minerals than modern wheat.[4] The grain has an amber colour and a high vitreousness.[5]

Yield

The actual average yield of Khorasan wheat is 1.1–1.3 tonnes per hectare (980–1,160 pounds per acre).[citation needed] In drier years, Khorasan wheat can sometimes yield even more than durum wheat.[citation needed] However, in normal or wet years, it yields approximately 1/3 less than the durum wheat.

Distribution

With only 6,500 hectares (16,000 acres) cultivated worldwide, Khorasan wheat does not play an important role in the world food system. By capturing this niche market, Khorasan wheat counterbalances its weak agronomic traits.[6]

Product use

Khorasan wheat is used similarly as modern wheat. Its grains can be consumed whole, or milled into flour. It can be found in breads, bread mixes, breakfast cereals, cookies, waffles, pancakes, bulgur, baked goods, pastas, drinks, beer, and snacks.

Apart from its nutritional qualities, Khorasan wheat is recognized for its smooth texture and nutty, buttery flavor.[4]

Nutrition and composition

Nutrients

Khorasan wheat, uncooked
Nutritional value per 100 g (3.5 oz)
Energy1,411 kJ (337 kcal)
70.38 g
Starch52.41 g
Dietary fiber9.1 g
2.2 g
Saturated0.192 g
Monounsaturated0.214 g
Polyunsaturated0.616 g
14.7 g
Niacin (B3)
40%
6.35 mg
Pantothenic acid (B5)
18%
0.9 mg
Vitamin B6
15%
0.255 mg
Vitamin E
4%
0.6 mg
MineralsQuantity
%DV
Iron
25%
4.41 mg
Magnesium
32%
134 mg
Manganese
124%
2.86 mg
Phosphorus
31%
386 mg
Potassium
15%
446 mg
Zinc
33%
3.68 mg
Other constituentsQuantity
Water10.95 g
Percentages estimated using US recommendations for adults,[7] except for potassium, which is estimated based on expert recommendation from the National Academies.[8]

In a 100-gram (3+12-ounce) reference serving, Khorasan wheat provides 1,410 kilojoules (337 kilocalories) of

carbohydrates, 2% fat
and 15% protein (table).

Composition

Khorasan wheat has high protein content which improves its vitreousness[9] which indicates a high milling yield.[4]

Gluten

As khorasan wheat contains

celiac disease, non-celiac gluten sensitivity and wheat allergy sufferers, among others.[10]

Requirements for climate and soil

A temperate continental climate with cold nights in the early spring (see

durum wheat
, which originates in the same region. But, because breeding efforts for Khorasan wheat have been very sparse (see chapter below), its adaptation to other climatic conditions is still limited.

Khorasan wheat is especially known for its drought tolerance, which is even better than that of durum wheat. Too much precipitation, especially in the end of the season, usually leads to dramatic disease problems (see section below).

Soils typically used for Khorasan wheat are the same as for durum wheat: deep friable black clays with a certain water storing capacity, also known as

Cultivation

The cultivation practices are quite similar to other wheat species, especially durum. As most of the Khorasan wheat is organically produced, the

The nutritional content of Khorasan wheat is the most important characteristic of this crop and the reason why it is cultivated. Therefore, the nutrition supply is one of the critical aspects of this production.

Harvest in general follows the same procedure as in the other wheat species. As soon as the grains are mature, a combine harvester threshes the Khorasan wheat. But contrary to common wheat, the seeds of Khorasan wheat are very brittle and crack in half very easily, which leads to a necessarily more gentle harvest and post-harvest treatment.

Diseases

The range of diseases in Khorasan wheat is more or less the same as in all other wheat species. Main diseases are typically caused by

fungi, such as the Fusarium head blight or the "black tip". Khorasan wheat has been found very susceptible to Fusarium head blight.[2]

Because of the high susceptibility to fungi, crop rotation is quite important, especially under organic production conditions. The rotation requirements resemble more or less those of durum wheat.

pasture legumes
.

Aspects of breeding

The traditional aim of

resistances against common fungi (e.g., Fusarium head blight), this genomic pool is interesting. Problematic in this case, is the economic unimportance of most of the tetraploid subspecies of wheat (except durum), which limits the investment to do intensive breeding, especially compared to the highly important common bread wheat.[2]

See also

References

  1. ^ "The Plant List: A Working List of All Plant Species".
  2. ^ .
  3. .
  4. ^ .
  5. ^ Quinn, R.M (1999). "Kamut: Ancient grain, new cereal". In Janick, J. Perspectives on new crops and new uses. Alexandria: ASHS Press. pp. 182–183.
  6. ^ a b Singh, Av (Winter 2007). "Ancient Grains, a wheat by any other name". The Canadian Organic Grower.
  7. ^ United States Food and Drug Administration (2024). "Daily Value on the Nutrition and Supplement Facts Labels". Retrieved 2024-03-28.
  8. PMID 30844154.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  9. ^ El-Rassas, H.N.; Atwa, M.F.; Mostafa, K.M. (1989). "Studies on the effect of gamma rays on the technological characteristics of some Egyptian wheat varieties". Faculty Journal of Agricultural Research Development. 3 (1): 1–21.
  10. PMID 25789300
    .
  11. ^ a b c Kneipp J. (2008), Durum wheat production, State of New South Wales through NSW Department of Primary Industries - Tamworth Agricultural Institute, Calala

Further reading