Kilogram-force

Source: Wikipedia, the free encyclopedia.
kilogram-force
Unit system
Gravitational metric system
Unit ofForce
Symbolkgf
Conversions
1 kgf in ...... is equal to ...
   SI units   9.806650 N
   CGS units   980,665.0 dyn
   British Gravitational units   2.204623 lbf
   Absolute English units   70.93164 pdl

The kilogram-force (kgf or kgF), or kilopond (kp, from

Latin: pondus, lit.'weight'), is a non-standard gravitational metric unit of force. It is not accepted for use with the International System of Units (SI)[1] and is deprecated for most uses.[citation needed] The kilogram-force is equal to the magnitude of the force exerted on one kilogram of mass in a 9.80665 m/s2 gravitational field (standard gravity, a conventional value approximating the average magnitude of gravity on Earth).[2] That is, it is the weight of a kilogram under standard gravity. Therefore, one kilogram-force is by definition equal to 9.80665 N.[3][4]
Similarly, a gram-force is 9.80665 mN, and a milligram-force is 9.80665 μN.

History

The gram-force and kilogram-force were never well-defined units until the

CGPM adopted a standard acceleration of gravity of 9.80665 m/s2 for this purpose in 1901,[5] though they had been used in low-precision measurements of force before that time. Even then, the proposal to define kilogram-force as standard unit of force was explicitly rejected.[6] Instead, the newton was proposed in 1913[7] and accepted in 1948.[8]
The kilogram-force has never been a part of the International System of Units (SI), which was introduced in 1960. The SI unit of force is the newton.

Prior to this, the unit was widely used in much of the world. It is still in use for some purposes, for example, it is used for the tension of bicycle

metric horsepower" (PS) as 75 metre-kiloponds per second.[3] In addition, the kilogram force was the standard unit used for Vickers hardness testing.[11]

Three approaches to metric units of mass and force or weight[12][13]
Base Force Weight Mass
2nd law of motion m = F/a F = Wa/g F = ma
System GM M CGS MTS SI
Acceleration (a) m/s2 m/s2 Gal m/s2 m/s2
Mass (m)
hyl
kilogram gram tonne kilogram
Force (F),
weight (W)
kilopond
kilopond dyne sthène newton
Pressure (p)
technical atmosphere
standard atmosphere barye
pieze
pascal

In 1940s, Germany, the thrust of a rocket engine was measured in kilograms-force,[citation needed] in the Soviet Union it remained the primary unit for thrust in the Russian space program until at least the late 1980s.[citation needed]

The term "kilopond" has been declared obsolete.[14]

Related units

The tonne-force, metric ton-force, megagram-force, and megapond (Mp) are each 1000 kilograms-force.

The decanewton or dekanewton (daN), exactly 10 N, is used in some fields as an approximation to the kilogram-force, because it is close to the 9.80665 N of 1 kgf.

The gram-force is 11000 of a kilogram-force.

Units of force
newton dyne kilogram-force,
kilopond
pound-force poundal
1 N ≡ 1 kg⋅m/s2 = 105 dyn ≈ 0.10197 kp ≈ 0.22481 lbf ≈ 7.2330 pdl
1 dyn = 10–5 N  1 g⋅cm/s2  1.0197×10−6 kp  2.2481×10−6 lbf  7.2330×10−5 pdl
1 kp = 9.80665 N = 980665 dyn  gn × 1 kg  2.2046 lbf  70.932 pdl
1 lbf  4.448222 N  444822 dyn  0.45359 kp  gn × 1 lb  32.174 pdl 
1 pdl  0.138255 N  13825 dyn  0.014098 kp  0.031081 lbf  1 lb⋅ft/s2
The value of gn as used in the official definition of the kilogram-force (9.80665 m/s2) is used here for all gravitational units.

See also

References

  1. ^ NIST Guide to the SI, Chapter 5: Units Outside the SI
  2. ^ The international system of units (SI) Archived 2016-06-03 at the Wayback MachineUnited States Department of Commerce, NIST Special Publication 330, 2008, p. 52
  3. ^ Special Publication 811, (1995) page 51
  4. ^ BIPM SI brochure Archived 2004-06-15 at the Wayback Machine, chapter 2.2.2.
  5. ^ Resolution of the 3rd CGPM (1901)
  6. ^ Proceedings of the 3rd General Conference on Weights and Measures, 1901, pages 62–64 and 68, (french)
  7. ^ Proceedings of the 5th General Conference on Weights and Measures, 1913, pages 51 and 56, (french)
  8. ^ "Resolution 7 of the 9th meeting of the CGPM (1948)". Archived from the original on 2020-06-22. Retrieved 2021-03-02.
  9. ^ "Balancing wheel tension with the TM-1 Spoke Tension Metre". Cyclingnews. Retrieved 2013-09-03. The recommended tension for spokes in bicycle wheels can be as low as 80 Kilograms force (Kfg) and as high as 230 Kilograms force. Author=Park Tool
  10. OCLC 609421363
    . Breaking load (BL): The strength of a wire and its actual force (usually given in grams, grams-force, mN, etc.) required to break a particular wire in a tensile pull. It is not tensile strength, which by definition is the force per unit area.
  11. . In the past the units for Vickers hardness were kg/mm2; in Table 12.6 we use the SI units of GPa.
  12. .
  13. .
  14. ^ European Economic Community, Council Directive of 18 October 1971 on the approximation of the laws of the Member States relating to units of measurement