Klepton

Source: Wikipedia, the free encyclopedia.
Klepton genetic inheritance in frogs

In biology, a klepton (abbr. kl.) and synklepton (abbr sk.) is a

zygogenesis; gynokleptons which reproduce by gynogenesis, and tychokleptons, which reproduce by a combination of both systems.[2]

Kleptogenic reproduction results in three potential outcomes:[3]

Etymology

The term is derived from the (Ancient or Modern) Greek κλέπτ(ης) (klépt(ēs), “thief”) + -on, after taxon, or kleptein, "to steal".[4] A klepton "steals" from an exemplar of another species in order to reproduce. In a paper entitled "Taxonomy of Parthenogenetic Species of Hybrid Origin", Charles J. Cole argues that the thief motif closely parallels the behaviour of certain reptiles.[5]

Examples

Salamander species

In the wild, five species of

Ambystoma salamanders contribute to a unisexual complex that reproduces via a combination of gynogenesis and kleptogenesis: A. tigrinum, A. barbouri, A. texanum, A. jeffersonium, and A. laterale. Over twenty genomic combinations have been found in nature, ranging from "LLJ" individuals (two A. laterale and an A. jeffersonium genome) to "LJTi" individuals (an A. laterale, A. jeffersonium, and an A. tigrinum genome).[3] Every combination, however, contains the genetic information from the A. laterale species, and analysis of mitochondrial DNA has indicated that these unisexual species most likely diverged from an A. barbouri individual some 5 million years ago,[6] making them the oldest known unisexual vertebrate species.[7]

A. tigrinum
Ambystoma
salamanders that reproduce by a combination of gynogenesis and kleptogenesis in the wild.

The fact that these salamanders have persisted for so long is remarkable, as it contradicts the notion that a majority of asexual lineages arise when the conditions are right and quickly disappear.[8] It has been argued that this persistence is very much due to the aforementioned "genome replacement" strategy that accompanies kleptogenic reproduction—replacing a portion of the maternal genome with paternal DNA in offspring has allowed unisexual individuals to "refresh" their genetic material through time. This facet of kleptogenesis was recently ascertained from genetic research that indicates there is no ancestral A. laterale genome that is maintained from one unisexual to the next, and that there is not a specific "L" genome that is found more often than others. "L" genetic material found in these salamanders has also not evolved to be substantially unique from sexual genomes.[3]

In 2007 Bogart et al found that, within a population, unisexual and sexual individuals are able to co-exist; that the genetic makeup of the unisexuals is highly variable; and that unisexual individuals share

alleles with sexual individuals.[6]

Frog species

Other species exhibiting the property include European water frogs of the genus Pelophylax.[2]

Pelophylax kl. esculentus
P. ridibundus )
Three klepton species of Pelophylax
found in Europe.

Fish species

The

Poecilia formosa) exhibits gynogenesis.[citation needed
]

See also

References

  • Dubois, A.; Günther, R. (1982), "Klepton and synklepton: two new evolutionary systematics categories in zoology", Zoologische Jahrbücher, Abteilung für Systematik, Ökologie & Biologie der Tiere, 109: 290–305