Laboratory experiments of speciation

Source: Wikipedia, the free encyclopedia.
A simplification of an allopatric speciation experiment where two lines of fruit flies are raised on maltose and starch media

Laboratory experiments of speciation have been conducted for all four modes of speciation: allopatric, peripatric, parapatric, and sympatric; and various other processes involving speciation: hybridization, reinforcement, founder effects, among others. Most of the experiments have been done on flies, in particular Drosophila fruit flies.[1] However, more recent studies have tested yeasts, fungi, and even viruses.

It has been suggested that laboratory experiments are not conducive to vicariant speciation events (allopatric and peripatric) due to their small population sizes and limited generations.

Platichthys flesus) that spawn in pelagic and demersal zones—having allopatrically speciated in under 3000 generations.[4]

Table of experiments

Six publications have attempted to compile, review, and analyze the experimental research on speciation:

  1. John Ringo, David Wood, Robert Rockwell, and Harold Dowse in 1985;[5]
  2. William R. Rice and Ellen E. Hostert in 1993;[6]
  3. Ann-Britt Florin and Anders Ödeen in 2002;[2]
  4. Mark Kirkpatrick and Virginie Ravigné in 2002;[7]
  5. Jerry A. Coyne and H. Allen Orr in 2004;[1]
    and
  6. James D. Fry in 2009.[8]

The table summarizes the studies and data reviewed in these publications. It also references several contemporary experiments and is non-exhaustive. In the table, multiple numbers separated by semi-colons in the generations column indicate that multiple experiments were conducted. The replications (in parentheses) indicates the number of populations used in the experiments—i.e. how many times the experiment was replicated. Various types of selection have been imposed on experimental populations and are indicated by the selection type column. Negative or positive results of each experiment are provided by the reproductive isolation column. Pre-zygotic reproductive isolation means that the reproducing individuals in the populations were unable to produce offspring (effectively a positive result). Post-zygotic isolation means that the reproducing individuals were able to produce offspring but they were either sterile or inviable (a positive result as well). Negative results are indicated by "none"—that is, the experiments did not result in reproductive isolation.

Laboratory experiments of speciation[1][6][7][2][8]
Species Trait Generations (replications) [duration] Tested
Selection
type
Studied genetic drift Reproductive isolation Reference Year
Drosophila melanogaster Escape response 18
Vicariant
, reinforcement, parapatric/

sympatric

Indirect; divergent Yes Pre-zygotic Grant & Mettler[9] 1969
D. melanogaster Locomotion 112 Vicariant Indirect; divergent No Pre-zygotic Burnet & Connolly[10] 1974
D. melanogaster Temperature, humidity 70–130 Vicariant Indirect; divergent Yes Pre-zygotic Kilias et al.[11] 1980
D. melanogaster
DDT
adaptation
600 [25 years, +15 years] Vicariant Direct No Pre-zygotic Boake et al.[12] 2003
D. melanogaster 17, 9, 9, 1, 1, 7, 7, 7, 7 Vicariant; parapatric/

sympatric

Direct, divergent Pre-zygotic in vicariance; none with gene flow Barker & Karlsson[13] 1974
D. melanogaster 40; 50 Reinforcement Direct; divergent Pre-zygotic Crossley[14] 1974
D. melanogaster Locomotion 45 Vicariant Direct; divergent No None van Dijken & Scharloo[15][16] 1979
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Wallace[17] 1953
D. melanogaster 36; 31 Reinforcement Direct; divergent Pre-zygotic Knight[18] 1956
D. melanogaster EDTA adaptation 25, 25, 25, 14 Semi-allopatric, reinforcement Indirect; divergent No Post-zygotic Robertson[19][20] 1966
D. melanogaster 25 (8) Vicariant; reinforcement; parapatric; sympatric Direct None Hostert[21] 1997
D. melanogaster Abdominal chaeta

number

21–31 Vicariant Direct Yes None Santibanez & Waddington[22] 1958
D. melanogaster Sternopleural chaeta number 32 Vicariant, reinforcement, parapatric/

sympatric

Direct No None Barker & Cummins[23] 1969
D. melanogaster
geotaxis
20 Vicariant No None Markow[24][25] 1975; 1981
D. melanogaster Peripatric Yes Rundle et al.[26] 1998
D. melanogaster Vicariant; peripatric Yes Mooers et al.[27] 1999
D. melanogaster 12 Reinforcement Divergent Pre-zygotic Thoday & Gibson[28] 1962
D. melanogaster None Thoday & Gibson[29][30] 1970; 1971
D. melanogaster 16 Reinforcement Indirect None Spiess & Wilke[31] 1954
D. melanogaster Reinforcement Direct; divergent Pre-zygotic Ehrman[32][33][34][35] 1971; 1973; 1979; 1983
D. melanogaster Sternopleural chaeta number 5; 27; 27; 1; 1; 1; 1; 1 Parapatric/

sympatric

None Chabora[36] 1968
D. melanogaster None Scharloo[37] 1967
D. melanogaster 1, 1 Coyne & Grant[38] 1972
D. melanogaster 25 Rice[39] 1985
D. melanogaster 25 Disruptive Pre-zygotic Rice & Salt[40] 1988
D. melanogaster 35; 35 Sympatric Pre-zygotic Rice & Salt[41] 1990
D. melanogaster NaCl and CuSO4 levels in food [3 years in allopatry, 1 in sympatry] Allopatric; reinforcement; sympatric Pre-zygotic in allopatry, none in sympatry Wallace[42] 1982
D. melanogaster Reinforcement Ehrman et al.[43] 1991
D. melanogaster Reinforcement Fukatami & Moriwaki[44] 1970
Drosophila simulans Scutellar bristles, development speed, wing width; desiccation resistance, fecundity, ethanol resistance; courtship display, re-mating speed, lek behavior; pupation height, clumped egg laying, general activity [3 years] Vicariant; peripatric Yes Post-zygotic Ringo et al.[5] 1985
Drosophila paulistorum 131; 131 Reinforcement Direct Pre-zygotic Dobzhansky et al.[45] 1976
D. paulistorum [5 years] Vicariant Dobzhansky and Pavlovsky[46] 1966
Drosophila willistoni pH adaptation 34–122 Vicariant Indirect; divergent No Pre-zygotic Kalisz & Cordeiro[47] 1980
Drosophila pseudoobscura Carbohydrate source 12 Vicariant Indirect Yes Pre-zygotic Dodd[48] 1989
D. pseudoobscura Temperature adaptation 25–60 Vicariant Direct Ehrman[49][50][51][52][53] 1964;

1969

D. pseudoobscura Phototaxis, geotaxis 5–11 Vicariant Indirect No Pre-zygotic del Solar[54] 1966
D. pseudoobscura Vicariant; peripatric Pre-zygotic Powell[55][56] 1978; 1985
D. pseudoobscura Peripatric; vicariant Yes Galiana et al.[57] 1993
D. pseudoobscura Temperature photoperiod; food 37 (78) [33–34 months] Vicariant Divergent Yes None Rundle[58] 2003
D. pseudoobscura &

Drosophila persimilis

22; 16; 9 Reinforcement Direct; divergent Pre-zygotic Koopman[59] 1950
D. pseudoobscura &

D. persimilis

18 (4) Direct Pre-zygotic Kessler[60] 1966
Drosophila mojavensis 12 Direct Pre-zygotic Koepfer[61] 1987
D. mojavensis Development time 13 Divergent Yes None Etges[62] 1998
Drosophila adiastola Peripatric Yes Pre-zygotic Arita & Kaneshiro[63] 1974
Drosophila silvestris Peripatric Yes Ahearn[64] 1980
Musca domestica Geotaxis 38 Vicariant Indirect No Pre-zygotic Soans et al.[65] 1974
M. domestica Geotaxis 16 Vicariant Direct; divergent No Pre-zygotic Hurd & Eisenburg[66] 1975
M. domestica Peripatric Yes Meffert & Bryant[67] 1991
M. domestica Regan et al.[68] 2003
Bactrocera cucurbitae
Development time 40–51 Divergent Yes Pre-zygotic Miyatake & Shimizu[69] 1999
Zea mays
6; 6 Reinforcement Direct; divergent Pre-zygotic Paterniani[70] 1969
Drosophila grimshawi Peripatric Jones, Widemo, & Arrendal[71] N/A
Saccharomyces cerevisiae Leu & Murry[72] 2006
D. melanogaster Reinforcement Harper & Lambert[73] 1983
Tribolium castaneum
Pupal weight 15 (6) Disruptive Halliburton & Gall[74] 1983
D. melanogaster Geotaxis Divergent Lofdahl et al.[75] 1992
D. pseudoobscura [10 years] Moya et al.[76] 1995
Neurospora Divergent Dettman et al.[77] 2008
S. cerevisiae 500 Divergent Dettman et al.[78] 2007
Sepsis cynipsea 35 Martin & Hosken[79] 2003
D. melanogaster Wigby & Chapman[80] 2006
D. pseudoobscura Sexual conflict 48–52 (4; 4; 4) Bacigalupe et al.[81] 2007
D. serrata Rundle et al.[82] 2005
Drosophila serrata & D. birchii Mate recognition 9 (3; 3) Reinforcement Natural Pre-zygotic Higgie et al.[83] 2000
Enterobacteria phage λ Escherichia coli receptor exploitation 35 cycles (6) Vicariant, sympatric Pre-zygotic Meyer et al.[84] 2016
Tetranychus urticae Resistance to host plant toxin Overmeer[85] 1966
T. urticae Resistance to host plant toxin Fry[86] 1999
Helianthus annus × H. petiolaris and H. anomalus Hybrid Rieseburg et al.[87] 1996
S. cerevisiae Greig et al.[88] 2002
D. melanogaster Life history Ghosh & Joshi[89] 2012
Drosophila subobscura Mate behavior Bárbaro et al.[90] 2015
Digital organisms ~42,000; ~850 (20) Ecological Post-zygotic Anderson & Harmon[91] 2014
Schizosaccharomyces pombe Complete reproductive isolation Seike et al.[92] 2015
D. pseudoobscura Courtship song 130 Debelle et al.[93] 2014
Callosobruchus maculatus 40 (16) Debelle et al.[94] 2010

See also

References

  1. ^
  2. ^
    doi:10.1046/j.1420-9101.2002.00356.x{{citation}}: CS1 maint: multiple names: authors list (link
    )
  3. ^
  4. ^
    S2CID 42100751{{citation}}: CS1 maint: multiple names: authors list (link
    )
  5. ^
    S2CID 16516804{{citation}}: CS1 maint: multiple names: authors list (link
    )
  6. ^
  7. PMID 17248452{{citation}}: CS1 maint: multiple names: authors list (link
    )
  8. ^ Burnet, B. & Connolly, K. (1974). Activity and sexual behavior in Drosophila melanogaster. In Abeelen, J. H. V. F. (eds). The Genetics of Behaviour. North-Holland, Amsterdam. Pp. 201–258.
  9. PMID 28563991{{citation}}: CS1 maint: multiple names: authors list (link
    )
  10. PMID 14635883{{citation}}: CS1 maint: multiple names: authors list (link
    )
  11. PMID 4217303{{citation}}: CS1 maint: multiple names: authors list (link
    )
  12. S2CID 39352792{{citation}}: CS1 maint: multiple names: authors list (link
    )
  13. S2CID 40169222{{citation}}: CS1 maint: multiple names: authors list (link
    )
  14. ^ Wallace, B. (1953), "Genetic divergence of isolated populations of Drosophila melanogaster", Proceedings of the Ninth International Congress of Genetics, 9: 761–764
  15. doi:10.1111/j.1558-5646.1956.tb02825.x{{citation}}: CS1 maint: multiple names: authors list (link
    )
  16. JSTOR 2405959{{citation}}: CS1 maint: multiple names: authors list (link
    )
  17. PMID 17248436{{citation}}: CS1 maint: multiple names: authors list (link
    )
  18. S2CID 24502821{{citation}}: CS1 maint: multiple names: authors list (link
    )
  19. S2CID 4411105{{citation}}: CS1 maint: multiple names: authors list (link
    )
  20. S2CID 5156234{{citation}}: CS1 maint: multiple names: authors list (link
    )
  21. S2CID 85333360{{citation}}: CS1 maint: multiple names: authors list (link
    )
  22. PMID 28555983{{citation}}: CS1 maint: multiple names: authors list (link
    )
  23. PMID 6061662{{citation}}: CS1 maint: multiple names: authors list (link
    )
  24. PMID 17248572{{citation}}: CS1 maint: multiple names: authors list (link
    )
  25. S2CID 84876223{{citation}}: CS1 maint: multiple names: authors list (link
    )
  26. PMID 28563894{{citation}}: CS1 maint: multiple names: authors list (link
    )
  27. ^ Ehrman, Lee, White, Marney A. & Wallace, B. (1991). A long-term study involving Drosophila melanogaster and toxic media. In Hecht, M. K., Wallace, B., & Maclntyre, R. J. (eds). Evolutionary biology, vol. 25. Plenum Press, New York. Pp. 175–209
  28. doi:10.1266/jjg.45.193{{citation}}: CS1 maint: multiple names: authors list (link
    )
  29. PMID 5219677{{citation}}: CS1 maint: multiple names: authors list (link
    )
  30. doi:10.1038/hdy.1980.11{{citation}}: CS1 maint: multiple names: authors list (link
    )
  31. doi:10.1017/S0016672300009666{{citation}}: CS1 maint: multiple names: authors list (link
    )
  32. PMID 28564258{{citation}}: CS1 maint: multiple names: authors list (link
    )
  33. PMID 28568735{{citation}}: CS1 maint: multiple names: authors list (link
    )
  34. ^ Arita, Lorna H. & Kaneshiro, Kenneth Y. (1979), "Ethological Isolation Between Two Stocks of Drosophila Adiastola Hardy", Hawaiian Entomological Society, 23 (1): 31–34{{citation}}: CS1 maint: multiple names: authors list (link)
  35. S2CID 43809774
  36. S2CID 85084378{{citation}}: CS1 maint: multiple names: authors list (link
    )
  37. S2CID 13379387{{citation}}: CS1 maint: multiple names: authors list (link
    )
  38. PMID 28565193{{citation}}: CS1 maint: multiple names: authors list (link
    )
  39. doi:10.1046/j.1420-9101.2002.00378.x{{citation}}: CS1 maint: multiple names: authors list (link
    )
  40. PMID 16461281{{citation}}: CS1 maint: multiple names: authors list (link
    )
  41. S2CID 7947934{{citation}}: CS1 maint: multiple names: authors list (link
    )
  42. PMID 28581046{{citation}}: CS1 maint: multiple names: authors list (link
    )
  43. S2CID 4379725{{citation}}: CS1 maint: multiple names: authors list (link
    )
  44. PMID 16780504{{citation}}: CS1 maint: multiple names: authors list (link
    )
  45. PMID 23301185{{citation}}: CS1 maint: multiple names: authors list (link
    )
  46. S2CID 30400444{{citation}}: CS1 maint: multiple names: authors list (link
    )