Manufacturing

Source: Wikipedia, the free encyclopedia.
(Redirected from
Light manufacturing
)

Manufacturing of an automobile by Tesla

Manufacturing is the creation or

tertiary industry to end users
and consumers (usually through wholesalers, who in turn sell to retailers, who then sell them to individual customers).

Manufacturing engineering is the field of engineering that designs and optimizes the manufacturing process, or the steps through which raw materials are transformed into a final product. The manufacturing process begins with the product design, and materials specification. These materials are then modified through manufacturing to become the desired product.

Contemporary manufacturing encompasses all intermediary stages involved in producing and integrating components of a product. Some industries, such as

steel
manufacturers, use the term fabrication instead.

The manufacturing sector is closely connected with the engineering and industrial design industries.

Etymology

The Modern English word manufacture is likely derived from the Middle French manufacture ("process of making") which itself originates from the Classical Latin manū ("hand") and Middle French facture ("making"). Alternatively, the English word may have been independently formed from the earlier English manufacture ("made by human hands") and fracture.[2] Its earliest usage in the English language was recorded in the mid-16th century to refer to the making of products by hand.[3][4]

History and development

Prehistory and ancient history

Flint stone core for making blades in Negev, Israel, c. 40000 BP
A late Bronze Age sword or dagger blade now on display at the National Archaeological Museum in France

Human ancestors manufactured objects using stone and other tools long before the emergence of

punch could be used to shape a stone very finely was developed during the Upper Paleolithic, beginning approximately 40,000 years ago.[10] During the Neolithic period, polished stone tools were manufactured from a variety of hard rocks such as flint, jade, jadeite, and greenstone. The polished axes were used alongside other stone tools including projectiles, knives, and scrapers, as well as tools manufactured from organic materials such as wood, bone, and antler.[11]

Copper smelting is believed to have originated when the technology of pottery kiln allowed sufficiently high temperatures.[12] The concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work-hardened to be suitable for manufacturing tools.[12] Bronze is an alloy of copper with tin; the latter of which being found in relatively few deposits globally delayed true tin bronze becoming widespread. During the Bronze Age, bronze was a major improvement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. Bronze significantly advanced shipbuilding technology with better tools and bronze nails, which replaced the old method of attaching boards of the hull with cord woven through drilled holes.[13] The Iron Age is conventionally defined by the widespread manufacturing of weapons and tools using iron and steel rather than bronze.[14] Iron smelting is more difficult than tin and copper smelting because smelted iron requires hot-working and can be melted only in specially designed furnaces. The place and time for the discovery of iron smelting is not known, partly because of the difficulty of distinguishing metal extracted from nickel-containing ores from hot-worked meteoritic iron.[15]

During the growth of the ancient civilizations, many ancient technologies resulted from advances in manufacturing. Several of the six classic

simple machines were invented in Mesopotamia.[16] Mesopotamians have been credited with the invention of the wheel. The wheel and axle mechanism first appeared with the potter's wheel, invented in Mesopotamia (modern Iraq) during the 5th millennium BC.[17] Egyptian paper made from papyrus, as well as pottery, were mass-produced and exported throughout the Mediterranean basin. Early construction techniques used by the Ancient Egyptians made use of bricks composed mainly of clay, sand, silt, and other minerals.[18]

Medieval and early modern

A stocking frame at Ruddington Framework Knitters' Museum in Ruddington, England

The

Umayyad conquest of Hispania.[20] A paper mill was established in Sicily in the 12th century. In Europe the fiber to make pulp for making paper was obtained from linen and cotton rags. Lynn Townsend White Jr. credited the spinning wheel with increasing the supply of rags, which led to cheap paper, which was a factor in the development of printing.[21] Due to the casting of cannon, the blast furnace came into widespread use in France in the mid 15th century. The blast furnace had been used in China since the 4th century BC.[12] The stocking frame, which was invented in 1598, increased a knitter's number of knots per minute from 100 to 1000.[22]

First and Second Industrial Revolutions

An 1835 illustration of a Roberts Loom weaving shed

The

water power, the development of machine tools and the rise of the mechanized factory system. The Industrial Revolution also led to an unprecedented rise in the rate of population growth. Textiles were the dominant industry of the Industrial Revolution in terms of employment, value of output and capital invested. The textile industry was also the first to use modern production methods.[24]: 40  Rapid industrialization first began in Britain, starting with mechanized spinning in the 1780s,[25] with high rates of growth in steam power and iron production occurring after 1800. Mechanized textile production spread from Great Britain to continental Europe and the United States in the early 19th century, with important centres of textiles, iron and coal emerging in Belgium and the United States and later textiles in France.[24]

An economic recession occurred from the late 1830s to the early 1840s when the adoption of the Industrial Revolution's early innovations, such as mechanized spinning and weaving, slowed down and their markets matured. Innovations developed late in the period, such as the increasing adoption of locomotives, steamboats and steamships,

mass-production, assembly lines, electrical grid systems, the large-scale manufacture of machine tools and the use of increasingly advanced machinery in steam-powered factories.[24][26][27][28]

Building on improvements in vacuum pumps and materials research, incandescent light bulbs became practical for general use in the late 1870s. This invention had a profound effect on the workplace because factories could now have second and third shift workers.[29] Shoe production was mechanized during the mid 19th century.[30] Mass production of sewing machines and agricultural machinery such as reapers occurred in the mid to late 19th century.[31] The mass production of bicycles started in the 1880s.[31] Steam-powered factories became widespread, although the conversion from water power to steam occurred in England earlier than in the U.S.[32]

Modern manufacturing

Bell Aircraft's assembly plant in Wheatfield, New York in 1944

Ball Brothers Glass Manufacturing Company, which electrified its mason jar plant in Muncie, Indiana, U.S. around 1900. The new automated process used glass blowing machines to replace 210 craftsman glass blowers and helpers. A small electric truck was now used to handle 150 dozen bottles at a time whereas previously used hand trucks could only carry 6 dozen bottles at a time. Electric mixers replaced men with shovels handling sand and other ingredients that were fed into the glass furnace. An electric overhead crane replaced 36 day laborers for moving heavy loads across the factory.[34]

Mass production was popularized in the late 1910s and 1920s by

milling machine that could simultaneously machine 15 engine blocks held on a single fixture. All of these machine tools were arranged systematically in the production flow and some had special carriages for rolling heavy items into machining positions. Production of the Ford Model T used 32,000 machine tools.[36]

Lean manufacturing, also known as just-in-time manufacturing, was developed in Japan in the 1930s. It is a production method aimed primarily at reducing times within the production system as well as response times from suppliers and to customers.[37][38] It was introduced in Australia in the 1950s by the British Motor Corporation (Australia) at its Victoria Park plant in Sydney, from where the idea later migrated to Toyota.[39] News spread to western countries from Japan in 1977 in two English-language articles: one referred to the methodology as the "Ohno system", after Taiichi Ohno, who was instrumental in its development within Toyota.[40] The other article, by Toyota authors in an international journal, provided additional details.[41] Finally, those and other publicity were translated into implementations, beginning in 1980 and then quickly multiplying throughout the industry in the United States and other countries.[42]

Manufacturing strategy

According to a "traditional" view of manufacturing strategy, there are five key dimensions along which the performance of manufacturing can be assessed: cost, quality, dependability, flexibility and innovation.[43]

In regard to manufacturing performance,

case studies, levels of interest were "bursting out all over".[48]

Manufacturing writer Terry Hill has commented that manufacturing is often seen as a less "strategic" business activity than functions such as marketing and finance, and that manufacturing managers have "come late" to business strategy-making discussions, where, as a result, they make only a reactive contribution.[49][50]

Industrial policy

Economics of manufacturing

national defense
.

On the other hand, most manufacturing processes may involve significant social and environmental costs. The clean-up costs of hazardous waste, for example, may outweigh the benefits of a product that creates it. Hazardous materials may expose workers to health risks. These costs are now well known and there is effort to address them by improving efficiency, reducing waste, using industrial symbiosis, and eliminating harmful chemicals.

The negative costs of manufacturing can also be addressed legally. Developed countries regulate manufacturing activity with

Tort law and product liability impose additional costs on manufacturing. These are significant dynamics in the ongoing process, occurring over the last few decades, of manufacture-based industries relocating operations to "developing-world" economies where the costs of production are significantly lower than in "developed-world" economies.[51]

Finance

From a financial perspective, the goal of the manufacturing industry is mainly to achieve

Safety

Manufacturing has unique health and safety challenges and has been recognized by the National Institute for Occupational Safety and Health (NIOSH) as a priority industry sector in the National Occupational Research Agenda (NORA) to identify and provide intervention strategies regarding occupational health and safety issues.[54][55]

Manufacturing and investment

Capacity use in manufacturing in Germany and the United States

Surveys and analyses of trends and issues in manufacturing and investment around the world focus on such things as:

  • The nature and sources of the considerable variations that occur cross-nationally in levels of manufacturing and wider industrial-economic growth;
  • Competitiveness; and
  • Attractiveness to foreign direct investors.

In addition to general overviews, researchers have examined the features and factors affecting particular key aspects of manufacturing development. They have compared production and investment in a range of Western and non-Western countries and presented case studies of growth and performance in important individual industries and market-economic sectors.[56][57]

On June 26, 2009,

EEF the manufacturers organisation
has led calls for the UK economy to be rebalanced to rely less on financial services and has actively promoted the manufacturing agenda.

Major manufacturing nations

According to the

India.[61][62]

UNIDO also publishes a Competitive Industrial Performance (CIP) Index, which measures the competitive manufacturing ability of different nations. The CIP Index combines a nation's gross manufacturing output with other factors like high-tech capability and the nation's impact on the world economy. Germany topped the 2020 CIP Index, followed by China, South Korea, the United States, and Japan.[63][64]

List of countries by manufacturing output

These are the top 50 countries by total value of manufacturing output in U.S. dollars for its noted year according to World Bank:[65]

List of countries by manufacturing output
Rank Country or region Millions of $US Year
 World 16,350,207 2021
1  China 4,975,614 2022
2  United States 2,497,132 2021
3  Japan 1,025,092 2021
4  Germany 752,742 2022
5  India 456,064 2022
6  South Korea 429,058 2022
7  Mexico 314,701 2022
8  Italy 306,009 2022
9  Russia 287,713 2022
10  France 265,231 2022
11  United Kingdom 259,314 2022
12  Indonesia 241,873 2022
13  Brazil 213,557 2022
14  Ireland 202,566 2022
15  Turkey 200,552 2022
16  Canada 162,160 2019
17  Spain 161,698 2022
18  Saudi Arabia 160,032 2022
19   Switzerland 150,631 2022
20  Thailand 133,867 2022
21  Poland 120,308 2022
22  Netherlands 115,189 2022
23  Argentina 101,318 2022
24  Vietnam 101,217 2022
25  Bangladesh 100,162 2022
26  Singapore 95,696 2022
27  Malaysia 95,218 2022
28  Australia 91,299 2022
29  Iran 82,660 2022
30  Sweden 79,351 2022
31  Egypt 76,139 2022
32  Austria 74,920 2022
33  Belgium 73,788 2022
34  Philippines 69,696 2022
35  Cuba 67,996 2022
36  Algeria 67,938 2022
37  Nigeria 64,246 2022
38  Czech Republic 60,989 2022
39  Venezuela 58,237 2014
40  Pakistan 51,622 2022
41  South Africa 49,714 2022
42  Israel 49,658 2021
43  United Arab Emirates 49,317 2022
44  Puerto Rico 48,796 2022
45  Denmark 46,654 2022
46  Finland 44,716 2022
47  Romania 39,865 2020
48  Colombia 39,582 2022
49  Portugal 31,254 2022
50  Hungary 30,514 2022

See also

References

  1. ^ Kenton, Will. "Manufacturing". Investopedia. Archived from the original on November 17, 2020. Retrieved January 16, 2021.
  2. .
  3. .
  4. .
  5. ^ "Human Ancestors Hall: Homo sapiens". Smithsonian Institution. Archived from the original on May 1, 2009. Retrieved July 15, 2021.
  6. ^ "Ancient 'Tool Factory' Uncovered". BBC News. May 6, 1999. Archived from the original on March 18, 2007. Retrieved July 15, 2021.
  7. PMID 10213682
    .
  8. ^ a b Burke, Ariane. "Archaeology". Encyclopedia Americana. Archived from the original on May 21, 2008. Retrieved July 15, 2021.
  9. PMID 15605391
    .
  10. .
  11. ^ Tóth, Zsuzsanna (2012). "The First Neolithic Sites in Central/South-East European Transect, Volume III: The Körös Culture in Eastern Hungary". In Anders, Alexandra; Siklósi, Zsuzsanna (eds.). Bone, Antler, and Tusk tools of the Early Neolithic Körös Culture. Oxford: BAR International Series 2334.
  12. ^ .
  13. ^ Paine, Lincoln (2013). The Sea and Civilization: A Maritime History of the World. New York: Random House, LLC.
  14. .
  15. .
  16. .
  17. ^ Potts, D. T. (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
  18. (PDF) from the original on November 1, 2023.
  19. from the original on August 25, 2021. Retrieved July 15, 2021.
  20. ^ de Safita, Neathery (July 2002). "A Brief History Of Paper". St. Louis Community College. Archived from the original on August 22, 2018. Retrieved July 15, 2021.
  21. ^ Marchetti, Cesare (1978). "A Postmortem Technology Assessment of the Spinning Wheel: The Last 1000 Years, Technological Forecasting and Social Change, 13; pp. 91–93" (PDF). Technological Forecasting and Social Change. Archived (PDF) from the original on May 2, 2016. Retrieved July 15, 2021.
  22. .
  23. ^ "Industrial History of European Countries". European Route of Industrial Heritage. Council of Europe. Archived from the original on June 23, 2021. Retrieved July 15, 2021.
  24. ^ .
  25. ^ Gupta, Bishnupriya. "Cotton Textiles and the Great Divergence: Lancashire, India and Shifting Competitive Advantage, 1600–1850" (PDF). International Institute of Social History. Department of Economics, University of Warwick. Archived (PDF) from the original on September 10, 2016. Retrieved July 15, 2021.
  26. .
  27. )
  28. ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia. p. 18.
  29. ^ Nye, David E. (1990). Electrifying America: Social Meanings of a New Technology. Cambridge, Massachusetts, United States and London, England: The MIT Press.
  30. .
  31. ^ .
  32. ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
  33. ^ Jerome, Harry (1934). Mechanization in Industry, National Bureau of Economic Research. p. xxviii.
  34. ^ Nye, David E. (1990). Electrifying America: Social Meanings of a New Technology. Cambridge, Massachusetts and London, England: MIT Press. pp. 14, 15.
  35. ^ Hounshell 1984
  36. ^ Hounshell 1984, p. 288
  37. .
  38. from the original on January 14, 2022. Retrieved March 6, 2023.
  39. ^ "Site of BMC/Leyland Australia Manufacturing Plant: Nomination as an Historic Engineering Marker" (PDF). The Institution of Engineers, Australia. September 30, 1999. Archived (PDF) from the original on September 4, 2021. Retrieved July 30, 2021.
  40. ^ Ashburn, A. (July 1977). "Toyota's "famous Ohno system"". American Machinist: 120–123.
  41. ISSN 0020-7543
    .
  42. ^ "The Founding of the Association for Manufacturing Excellence: Summarized at a Meeting of its Founders, February 2, 2001" (PDF). Target. 17 (3). Association for Manufacturing Excellence: 23–24. 2001. Archived (PDF) from the original on March 9, 2021. Retrieved July 15, 2021.
  43. ^ Hayes, R. H., Wheelwright, S. C. and Clark, K. B. (1988), Dynamic Manufacturing, New York: The Free Press, quoted in Wassenhove, L. van and Corbett, C. J., "Trade-Offs? What Trade Offs? (A Short Essay on Manufacturing Strategy", p. 1, INSEAD, published April 6, 1991, accessed September 27, 2023
  44. , accessed August 22, 2023
  45. ^ Skinner, W., "Focused Factory", Harvard Business Review, published May 1, 1974.
  46. ^ a b Wassenhove, L. van and Corbett, C. J., "Trade-Offs? What Trade Offs? (A Short Essay on Manufacturing Strategy", p. 2, INSEAD, published April 6, 1991, accessed September 27, 2023
  47. ^ Haas, E. A., "Breakthrough Manaufacturing", Harvard Business Review, March/April 1987, pp. 75–81
  48. ^ Skinner, W., "Missing the Links in Manufacturing Strategy" in Voss, C. A. (ed) (1992), Manufacturing Strategy – Process and Content, Chapman and Hall, pp. 12–25
  49. ^ Hill, T., Manufacturing Strategy: Developments in Approach and Analytics, University of Warwick, 1990, accessed 28 September 2023
  50. ^ Hill, T. (1993), Manufacturing Strategy, second edition, Macmillan, chapter 2
  51. – via CrossRef.
  52. ^ Young, Julie. "Unit Cost Definition". investopedia.com. Investopedia. Archived from the original on May 20, 2022. Retrieved May 20, 2022.
  53. from the original on March 5, 2022. Retrieved May 20, 2022.
  54. ^ "Manufacturing Program". Centres for Disease Control and Prevention. February 11, 2019. Archived from the original on April 3, 2019. Retrieved March 14, 2019.
  55. ^ "National Occupational Research Agenda for Manufacturing". Centres for Disease Control and Prevention. February 4, 2019. Archived from the original on June 18, 2019. Retrieved March 14, 2019.
  56. OCLC 49552466
    .
  57. from the original on April 1, 2021. Retrieved November 19, 2015.
  58. ^ David Bailey; Soyoung Kim (June 26, 2009). "GE's Immelt says U.S. economy needs industrial renewal". Reuters. Archived from the original on December 12, 2020. Retrieved March 6, 2023.
  59. ^ "Why Does Manufacturing Matter? Which Manufacturing Matters?". February 2012. Archived from the original on October 8, 2012.
  60. ^ Martin Crutsinger (2007). "Factory Jobs: 3 Million Lost Since 2000". USA Today. Associated Press. Archived from the original on December 4, 2022. Retrieved March 6, 2023.
  61. ^ "UNIDO Statistics Data Portal". Archived from the original on October 5, 2021. Retrieved October 5, 2021.
  62. ^ "Leading Manufacturing Nations". July 15, 2021. Archived from the original on March 4, 2022. Retrieved March 14, 2022.
  63. ^ "UNIDO's Competitive Industrial Performance Index 2020: Country Profiles". unido.org. Archived from the original on April 6, 2022. Retrieved June 21, 2022.
  64. ^ "Competitive Industrial Performance Index 2020: Country Profiles ( Report)". stat.unido.org. Archived from the original on January 10, 2022. Retrieved June 21, 2022.
  65. ^ "Manufacturing, Value Added (Current US$)". World Bank. Archived from the original on January 7, 2020. Retrieved July 14, 2021.

Further reading

  • Kalpakjian, Serope; Steven Schmid (2005). Manufacturing, Engineering & Technology. .

External links