List of minor-planet groups

Source: Wikipedia, the free encyclopedia.

A minor-planet group is a population of minor planets that share broadly similar orbits. Members are generally unrelated to each other, unlike in an asteroid family, which often results from the break-up of a single asteroid. It is customary to name a group of asteroids after the first member of that group to be discovered, which is often the largest.

Groups out to the orbit of Earth

There are relatively few asteroids that orbit close to the Sun. Several of these groups are hypothetical at this point in time, with no members having yet been discovered; as such, the names they have been given are provisional.

  • aphelion
    of less than 0.3874 AU). A few searches for vulcanoids have been conducted but none have been discovered so far.
  • ꞌAylóꞌchaxnim asteroids (previously named Vatira) are asteroids that orbit entirely within the orbit of Venus (have an aphelion of less than 0.718 AU). As of 2022, one such asteroid is known: 594913 ꞌAylóꞌchaxnim
    .
  • Atira asteroids (Apohele; Interior-Earth Objects) are a small group of known asteroids whose aphelion is less than 0.983 AU, meaning they orbit entirely within Earth's orbit. The group is named after its first confirmed member, 163693 Atira. As of 2020, the group consists of 22 members, 6 of which are numbered.[1]
  • perihelion
    smaller than Mercury's 0.3075 AU.
  • Venus-crosser asteroids having a perihelion smaller than Venus's 0.7184 AU. This group includes the above Mercury-crossers (if their aphelion is greater than Venus's perihelion. All known Mercury crossers satisfy this condition except ꞌAylóꞌchaxnim, which has an aphelion smaller than Venus's perihelion and a perihelion slightly smaller than Mercury's aphelion).
  • Earth-crosser asteroids having a perihelion smaller than Earth
    's 0.9833 AU. This group includes the above Mercury- and Venus-crossers, apart from the Apoheles. They are also divided into the
  • Arjuna asteroids are somewhat vaguely defined as having orbits similar to Earth's; i.e. with an average orbital radius of around 1 AU and with low eccentricity and inclination.[2] Due to the vagueness of this definition some asteroids belonging to the Atira, Amor, Apollo or Aten groups can also be classified as Arjunas. The term was introduced by Spacewatch and does not refer to an existing asteroid; examples of Arjunas include 1991 VG.
  • 2020 XL5
    .
  • Near-Earth asteroids is a catch-all term for asteroids whose orbit closely approaches that of Earth. It includes almost all of the above groups, as well as the Amor asteroids
    .

Groups out to the orbit of Mars

The asteroid belt

a < 2.5 AU
)
  middle main-belt (2.5 AU < a < 2.82 AU)
  outer main-belt (a > 2.82 AU
Asteroid groups out to the orbit of Jupiter. The asteroid belt is shown in red

The overwhelming majority of known asteroids have orbits lying between the orbits of Mars and Jupiter, roughly between 2 and 4 AU. These could not form a planet due to the gravitational influence of Jupiter. Jupiter's gravitational influence, through orbital resonance, clears Kirkwood gaps in the asteroid belt, first recognised by Daniel Kirkwood in 1874.

The region with the densest concentration (lying between the Kirkwood gaps at 2.06 and 3.27 AU, with

eccentricities below about 0.3, and inclinations smaller than 30°) is called the asteroid belt
. It can be further subdivided by the Kirkwood Gaps into the:

  • Inner asteroid belt, inside of the strong Kirkwood gap at 2.50 AU due to the 3:1 Jupiter orbital resonance. The largest member is 4 Vesta.
    • It apparently also includes a group called the main-belt I asteroids which have a semi-major axis between 2.3 AU and 2.5 AU and an inclination of less than 18°.
  • Middle (or intermediate) asteroid belt, between the 3:1 and 5:2 Jupiter orbital resonances, the latter at 2.82 AU. The largest member is Ceres. This group is apparently split into the:
    • Main-belt IIa asteroids which have a semi-major axis between 2.5 AU and 2.706 AU and an inclination less than 33°.
    • Main-belt IIb asteroids which have a semi-major axis between 2.706 AU and 2.82 AU and an inclination less than 33°.
  • Outer asteroid belt between the 5:2 and 2:1 Jupiter orbital resonances. The largest member is 10 Hygiea. This group is apparently split into the:
    • Main-belt IIIa asteroids which have a semi-major axis between 2.82 AU and 3.03 AU, an eccentricity less than .35, and an inclination less than 30°.
    • Main-belt IIIb asteroids which have a semi-major axis between 3.03 AU and 3.27 AU, an eccentricity less than .35, and an inclination less than 30°.

Other groups out to the orbit of Jupiter

There are a number of more or less distinct asteroid groups outside the asteroid belt, distinguished either by mean distance from the Sun, or particular combinations of several orbital elements:

There is a forbidden zone between the Hildas and the Trojans (roughly 4.05 AU to 4.94 AU). Aside from 279 Thule and 228 objects in mostly unstable-looking orbits, Jupiter's gravity has swept everything out of this region.

Groups beyond the orbit of Jupiter

Most of the minor planets beyond the orbit of Jupiter are believed to be composed of

perihelia
of their orbits are too distant from the Sun to produce a significant tail.

Groups at or beyond the orbit of Neptune

  • The
    2001 QR322
    .
  • Trans-Neptunian objects (TNOs) are anything with a mean orbital radius greater than 30 AU. This classification includes the Kuiper-belt objects (KBOs), the scattered disc, and the Oort cloud.
    • Kuiper-belt objects extend from roughly 30 AU to 50 AU and are broken into the following subcategories:
      • Resonant objects occupy orbital resonances with Neptune, excluding the 1:1 resonance of the Neptune trojans.
        • Plutinos are by far the most common resonant KBOs and are in a 2:3 resonance with Neptune, just like Pluto. The perihelion of such an object tends to be close to Neptune's orbit (much as happens with Pluto), but when the object comes to perihelion, Neptune alternates between being 90 degrees ahead of and 90 degrees behind of the object, so there's no chance of a collision. The MPC defines any object with a mean orbital radius between 39 AU and 40.5 AU to be a plutino. 90482 Orcus and 28978 Ixion are among the brightest known.
        • Other resonances. There are several known objects in the 1:2 resonance, dubbed twotinos, with a mean orbital radius of 47.7 AU and an eccentricity of 0.37. There are several objects in the 2:5 (mean orbital radius of 55 AU), 4:7, 4:5, 3:10, 3:5, and 3:4 resonances, among others. The largest in the 2:5 resonance is (84522) 2002 TC302, and the largest in the 3:10 resonance is 225088 Gonggong.
      • (15760) 1992 QB1 from its 1992 discovery to its 2018 naming), have a mean orbital radius between approximately 40.5 AU and 47 AU. Cubewanos are objects in the Kuiper belt that didn't get scattered and didn't get locked into a resonance with Neptune. The largest is Makemake
        .
    • Scattered disc objects (SDOs) typically have, unlike cubewanos and resonant objects, high-inclination, high-eccentricity orbits with perihelia that are still not too far from Neptune's orbit. They are assumed to be objects that encountered Neptune and were "scattered" out of their originally more circular orbits close to the ecliptic. The most massive known dwarf planet, Eris, belongs to this category.
      • Detached objects (extended scattered disk) with generally highly elliptical, very large orbits of up to a few hundred AU and a perihelion too far from Neptune's orbit for any significant interaction to occur. A more typical member of the extended disk is (148209) 2000 CR105.
        • Sednoids have perihelia very far removed from the orbit of Neptune. This group is named after the best-known member, 90377 Sedna. As of 2020, only 4 objects in this category have been identified, but it is suspected that there are many more.
    • The Oort cloud is a hypothetical cloud of comets with a mean orbital radius between approximately 50,000 AU and 100,000 AU. No Oort-cloud objects have been detected; the existence of this classification is only inferred from indirect evidence. Some astronomers have tentatively associated 90377 Sedna with the inner Oort cloud.

See also

References

  1. ^ "JPL Small-Body Database Search Engine: Q < 0.983 (AU)". JPL Solar System Dynamics. Retrieved 21 December 2017.
  2. .
  3. ^ .
  4. ^ a b "Linda T. Elkins-Tanton – Asteroids, Meteorites, and Comets (2010) – Page 96 (Google Books)".
  5. .

External links