List of multiple discoveries

Source: Wikipedia, the free encyclopedia.

Historians and sociologists have remarked the occurrence, in

multiple independent discovery". Robert K. Merton defined such "multiples" as instances in which similar discoveries are made by scientists working independently of each other.[1] "Sometimes", writes Merton, "the discoveries are simultaneous or almost so; sometimes a scientist will make a new discovery which, unknown to him, somebody else has made years before."[2]

Commonly cited examples of multiple independent discovery are the 17th-century independent formulation of calculus by Isaac Newton, Gottfried Wilhelm Leibniz and others, described by A. Rupert Hall;[3] the 18th-century discovery of oxygen by Carl Wilhelm Scheele, Joseph Priestley, Antoine Lavoisier and others; and the theory of the evolution of species, independently advanced in the 19th century by Charles Darwin and Alfred Russel Wallace.

Multiple independent discovery, however, is not limited to such famous historic instances. Merton believed that it is multiple discoveries, rather than unique ones, that represent the common pattern in science.[4]

Merton contrasted a "multiple" with a "singleton"—a discovery that has been made uniquely by a single scientist or group of scientists working together.[5]

A distinction is drawn between a

Bolesław Prus.[6] However, discoveries and inventions are inextricably related, in that discoveries lead to inventions, and inventions facilitate discoveries; and since the same phenomenon of multiplicity
occurs in relation to both discoveries and inventions, this article lists both multiple discoveries and multiple inventions.

3rd century BCE

Aristarchos

13th century CE

14th century

Copernicus

16th century

Galileo
Ortelius

17th century

Newton
Leibniz

18th century

Scheele
Laplace

19th century

Gauss
Faraday
Darwin
Mendeleyev
Bell
Ramón y Cajal
Cybulski
Becquerel

20th century

Nettie Stevens
Smoluchowski
Tykociński-Tykociner
Einstein
Alexander Friedmann
Hsien Wu
Szilárd
Koprowski
Purcell
Nambu
Higgs
Schwinger
Vine
Penzias
Schally
Baltimore
Alvarez
Barré-Sinoussi
Immerman
Cocks
Wilczek
Ting
Cech
Perlmutter, Riess, Schmidt

21st century

McDonald, Kajita
Allison
Šikšnys
Patapoutian

Quotations

"When the time is ripe for certain things, these things appear in different places in the manner of violets coming to light in early spring."

— 
Paul Vitanyi
, An introduction to Kolmogorov Complexity and Its Applications, 1st ed., 1993, p. 83.

"[Y]ou do not [make a discovery] until a background knowledge is built up to a place where it's almost impossible not to see the new thing, and it often happens that the new step is done contemporaneously in two different places in the world, independently."

"[A] man can no more be completely original ... than a tree can grow out of air."

I never had an idea in my life. My so-called inventions already existed in the environment – I took them out. I've created nothing. Nobody does. There's no such thing as an idea being brain-born; everything comes from the outside.

See also

Notes

  1. Joseph-Jérôme Lalande; by Scottish astronomer John Lambert, while working at the Munich Observatory in 1845 and 1846; and by James Challis (4 and 12 August 1846).[37]

References

  1. .
  2. .
  3. ^ A. Rupert Hall, Philosophers at War, New York, Cambridge University Press, 1980.
  4. ^ Robert K. Merton, "Singletons and Multiples in Scientific Discovery: a Chapter in the Sociology of Science", Proceedings of the American Philosophical Society, 105: 470–86, 1961. Reprinted in Robert K. Merton, The Sociology of Science: Theoretical and Empirical Investigations, Chicago, University of Chicago Press, 1973, pp. 343–70.
  5. ^ Robert K. Merton, On Social Structure and Science, p. 307.
  6. ^ Bolesław Prus, O odkryciach i wynalazkach (On Discoveries and Inventions): A Public Lecture Delivered on 23 March 1873 by Aleksander Głowacki [Bolesław Prus], Passed by the [Russian] Censor (Warsaw, 21 April 1873), Warsaw, Printed by F. Krokoszyńska, 1873, p. 12.
  7. ^ Owen Gingerich, "Did Copernicus Owe a Debt to Aristarchus?" Journal for the History of Astronomy, vol. 16, no. 1 (February 1985), pp. 37–42. [1]
  8. , pp. 18–19, 179–82.
  9. ^ "Copernicus seems to have drawn up some notes [on the displacement of good coin from circulation by debased coin] while he was at Olsztyn in 1519. He made them the basis of a report on the matter, written in German, which he presented to the Prussian Diet held in 1522 at Grudziądz .... He later drew up a revised and enlarged version of his little treatise, this time in Latin, and setting forth a general theory of money, for presentation to the Diet of 1528." Angus Armitage, The World of Copernicus, 1951, p. 91.
  10. ^ Αριστοφάνης. "Βάτραχοι". Βικιθήκη. Retrieved 19 April 2013.
  11. ^ .
  12. ^ * Rombeck, Terry (22 January 2005). "Poe's little-known science book reprinted". Lawrence Journal-World & News.
  13. ^ Marilynne Robinson, "On Edgar Allan Poe", The New York Review of Books, vol. LXII, no. 2 (5 February 2015), pp. 4, 6.
  14. S2CID 4281585
    .
  15. ^ a b Schmeling, Harro (2004). "Geodynamik" (PDF) (in German). University of Frankfurt.
  16. ^ Wallace, Alfred Russel (1889), "12", Darwinism ..., Macmillan, p. 341
  17. ^ Lyell, Charles (1872), Principles of Geology ... (11th ed.), John Murray, p. 258
  18. ^ Coxworthy, Franklin (1924). Electrical Condition; Or, How and where Our Earth was Created. J. S. Phillips. Retrieved 6 December 2014.
  19. ,
  20. ^ Bursley Taylor, Frank (3 June 1910). "Bearing of the Tertiary mountain belt on the origin of the earth's plan". Bulletin of the Geological Society of America. 21: 179–226.
  21. ^ Wegener, Alfred (6 January 1912), "Die Herausbildung der Grossformen der Erdrinde (Kontinente und Ozeane), auf geophysikalischer Grundlage" (PDF), Petermanns Geographische Mitteilungen, 63: 185–195, 253–256, 305–309, archived from the original (PDF) on 4 October 2011.
  22. ^ Eduard Suess, Das Antlitz der Erde (The Face of the Earth), vol. 1 (Leipzig, (Germany): G. Freytag, 1885), page 768. From p. 768: "Wir nennen es Gondwána-Land, nach der gemeinsamen alten Gondwána-Flora, … " (We name it Gondwána-Land, after the common ancient flora of Gondwána ... )
  23. ^ Suess, Edward (March 1893). "Are ocean depths permanent?". Natural Science: A Monthly Review of Scientific Progress. 2: 180–187 – via Google Books. This ocean we designate by the name 'Tethys', after the sister and consort of Oceanus. The latest successor of the Tethyan Sea is the present Mediterranean.
  24. ^ Perry, John (1895). "On the age of the earth". Nature. 51: 224–227, 341–342, 582–585 – via Hathi Trust.
  25. ^ Roger Penrose, The Road to Reality, Vintage Books, 2005, p. 103.
  26. , Chicago, The University of Chicago Press, 1996, p. 17.
  27. ^ Vladimir D. Shiltsev, "Nov. 19, 1771: Birth of Mikhail Lomonosov, Russia's first modern scientist", APS [American Physical Society] News, November 2011 (vol. 20, no. 10) [2].
  28. ^ Anirudh, "10 Major Contributions of Antoine Lavoisier", 17 October 2017 [3].
  29. ^ "MICHAEL SENDIVOGIUS, ROSICRUCIAN, and FATHER OF STUDIES OF OXYGEN" (PDF).
  30. ^ Alan Ellis, "Black Holes – Part 1 – History", Astronomical Society of Edinburgh, Journal 39, 1999 Archived 6 October 2017 at the Wayback Machine. A description of Michell's theory of black holes.
  31. ^ a b Stephen Hawking, A Brief History of Time, Bantam, 1996, pp. 43–45.
  32. Wm Theodore de Bary
    , Sources of East Asian Tradition, vol. 2: The Modern Period, New York, Columbia University Press, 2008, p. 85.
  33. ^ Roger Penrose, The Road to Reality, Vintage Books, 2005, p. 81.
  34. ^ Gauss, Carl Friedrich, "Nachlass: Theoria interpolationis methodo nova tractata", Werke, Band 3, Göttingen, Königliche Gesellschaft der Wissenschaften, 1866, pp. 265–327.
  35. ^ Heideman, M. T., D. H. Johnson, and C. S. Burrus, "Gauss and the history of the fast Fourier transform", Archive for History of Exact Sciences, vol. 34, no. 3 (1985), pp. 265–277.
  36. ^ Halliday et al., Physics, vol. 2, 2002, p. 775.
  37. ^
    Dale P. Cruikshank and William Sheehan, Discovering Pluto: Exploration at the Edge of the Solar System, University of Arizona Press, 475 pp.; Alan Stern and David Grinspoon, Chasing New Horizons: Inside the Epic First Mission to Pluto, Picador, 295 pp.; and Adam Morton, Should We Colonize Other Planets?, Polity, 122 pp.), The New York Review of Books
    , vol. LXVI, no. 16 (24 October 2019), pp. 39–41. (p. 39.)
  38. ^ "Aug. 18, 1868: Helium Discovered During Total Solar Eclipse", https://www.wired.com/thisdayintech/2009/08/dayintech_0818/
  39. ^ Bolesław Prus, On Discoveries and Inventions: A Public Lecture Delivered on 23 March 1873 by Aleksander Głowacki [Bolesław Prus], Passed by the [Russian] Censor (Warsaw, 21 April 1873), Warsaw, Printed by F. Krokoszyńska, 1873, [4], p. 13.
  40. ^ Christopher Kasparek, review of Robert Olby, The Path to the Double Helix, in Zagadnienia naukoznawstwa [Logology, or Science of Science], Warsaw, Polish Academy of Sciences, vol. 14, no. 3 (1978), pp. 461–63.
  41. ^ Wilkinson, Alec, "Illuminating the Brain's 'Utter Darkness'" (review of Benjamin Ehrlich, The Brain in Search of Itself: Santiago Ramón y Cajal and the Story of the Neuron, Farrar, Straus and Giroux, 2023, 447 pp.; and Timothy J. Jorgensen, Spark: The Life of Electricity and the Electricity of Life, Princeton University Press, 2021, 436 pp.), The New York Review of Books, vol. LXX, no. 2 (9 February 2023), pp. 32, 34–35. (information cited, on pp. 32 and 34.)
  42. ^ Maury Klein, Chapter 9: "The Cowbird, The Plugger, and the Dreamer", The Power Makers: Steam, Electricity, and the Men Who Invented Modern America, Bloomsbury Publishing USA, 2010.
  43. ^ Kenneth E. Hendrickson III, The Encyclopedia of the Industrial Revolution in World History, volume 3, Rowman & Littlefield, 2014, p. 564.
  44. ^ Isaac Asimov, Asimov's Biographical Encyclopedia of Science and Technology, p. 933.
  45. ^ N.E. Collinge, The Laws of Indo-European, pp. 149–52.
  46. .
  47. .
  48. .
  49. .
  50. , pp. 64–65.
  51. , p. 65.
  52. , p. 166.
  53. ^ .
  54. .
  55. ^ ""Stokes-Einstein-Sutherland equation", P. Hänggi" (PDF).
  56. .
  57. .
  58. Encyclopædia Britannica Online
    . Retrieved 7 November 2009.
  59. , p. 27.
  60. ^ Brian Greene, "Why He [Albert Einstein] Matters: The fruits of one mind shaped civilization more than seems possible", Scientific American, vol. 313, no. 3 (September 2015), pp. 36–37.
  61. ^ "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  62. ^ Rombeck, Terry (22 January 2005). "Poe's little-known science book reprinted". Lawrence Journal-World & News.
  63. ^ Robinson, Marilynne, "On Edgar Allan Poe", The New York Review of Books, vol. LXII, no. 2 (5 February 2015), pp. 4, 6.
  64. ^ M.J. O'Dowd, E.E. Philipp, The History of Obstetrics & Gynaecology, London, Parthenon Publishing Group, 1994, p. 547.
  65. ^ Ooishi, W. (1926) Raporto de la Aerologia Observatorio de Tateno (in Esperanto). Aerological Observatory Report 1, Central Meteorological Observatory, Japan, 213 pages.
  66. .
  67. ^ Acepilots.com. Wiley Post. Retrieved on 8 May 2008.
  68. ^ "Weather Basics – Jet Streams". Archived from the original on 29 August 2006. Retrieved 8 May 2009.
  69. ^ "When the jet stream was the wind of war". Archived from the original on 29 January 2016. Retrieved 9 December 2018.
  70. PMID 16743804
    .
  71. .
  72. .
  73. ^ Stephen Hawking, A Brief History of Time, Bantam Press, 1996, p. 88.
  74. PMID 16577722
    .
  75. .
  76. .
  77. ^ See the "bibliographic notes" at the end of chapter 7 in Hopcroft & Ullman, Introduction to Automata, Languages, and Computation, Addison-Wesley, 1979.
  78. .
  79. ^ Jane Smiley, The Man Who Invented the Computer: The Biography of John Atanasoff, Digital Pioneer, 2010.
  80. ^ Jack Murtagh, "This Unexpected Pattern of Numbers Is Everywhere: A curious mathematical phenomenon called Benford's law governs the numbers all around us", Scientific American, vol. 329, no. 5 (December 2023), pp. 82–83.
  81. , p. 27.
  82. ^ Irwin Abrams website,[5]
  83. S2CID 85637273
    .
  84. ^ "Twists and Turns in the Development of the Transistor". Institute of Electrical and Electronics Engineers, Inc. Archived from the original on 8 January 2015. Retrieved 8 July 2015.
  85. ^ "1948 – The European Transistor Invention". Computer History Museum.
  86. ^ "The Nobel Prize in Physics 1956". NobelPrize.org.
  87. S2CID 143609308
    .
  88. .
  89. ^ "Background and Theory Page of Nuclear Magnetic Resonance Facility". Mark Wainwright Analytical Centre – University of Southern Wales Sydney. 9 December 2011. Archived from the original on 27 January 2014. Retrieved 9 February 2014.
  90. ^ The Chip that Jack Built, c. 2008, HTML, Texas Instruments, retrieved 29 May 2008.
  91. , p. 129.
  92. ^ Nobel Web AB, 10 October 2000 The Nobel Prize in Physics 2000, retrieved 29 May 2008.
  93. S2CID 119892206
    .
  94. .
  95. ^ See Chapter 1.6 in the first edition of Li & Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, who cite Chaitin (1975): "this definition [of Kolmogorov complexity] was independently proposed about 1965 by A.N. Kolmogorov and me ... Both Kolmogorov and I were then unaware of related proposals made in 1960 by Ray Solomonoff".
  96. ISSN 0734-2101
    .
  97. .
  98. .
  99. .
  100. Conductive polymers
    ".
  101. ^ Sean Carrol, The Particle at the End of the Universe: The Hunt for the Higgs and the Discovery of a New World, Dutton, 2012, p.228. [6]
  102. (PDF) on 3 December 2013. (English translation: Soviet Physics JETP, vol. 24, p. 1, January 1967.)
  103. .
  104. ^ Joshua Rothman, "The Rules of the Game: How does science really work?" (review of Michael Strevens, The Knowledge Machine: How Irrationality Created Modern Science, Liveright), The New Yorker, 5 October 2020, pp. 67–71. (p. 68.)
  105. ^ See Garey & Johnson, Computers and intractability, p. 119.
    Cf. also the survey article by Trakhtenbrot (see "External Links").
    Levin emigrated to the U.S. in 1978.
  106. ^ D. J. Gross, F. Wilczek, Ultraviolet behavior of non-abeilan gauge theoreies Archived 5 July 2008 at the Wayback Machine, Physical Review Letters 30 (1973) 1343–1346; H. D. Politzer, Reliable perturbative results for strong interactions Archived 30 June 2019 at the Wayback Machine, Physical Review Letters 30 (1973) 1346–1349
  107. ^ Israel Rosenfield and [dward Ziff, "Epigenetics: The Evolution Revolution", The New York Review of Books, vol. LXV, no. 10 (7 June 2018), pp. 36,38.
  108. PMID 1010803
    .
  109. .
  110. . S2CID 16017767.
  111. ^ Peter Brannen, "The Worst Times on Earth: Mass extinctions send us a warning about the future of life on this planet", Scientific American, vol. 323, no. 3 (September 2020), pp. 74–81. (The Smit–Hertogen independent discovery is referenced on p. 80.)
  112. PMID 6601823
    .
  113. .
  114. ^ "The 2008 Nobel Prize in Physiology or Medicine - Press Release". www.nobelprize.org. Retrieved 28 January 2018.
  115. PMID 6206563
    .
  116. .
  117. ^ Tim Folger, "The Quantum Hack: Quantum computers will render today's cryptographic methods obsolete. What happens then?" Scientific American, vol. 314, no. 2 (February 2016), pp. 50, 53.
  118. ^ David H. Levy, "My Life as a Comet Hunter: The need to pass a French test, of all things, spurred half a century of cosmic sleuthing", Scientific American, vol. 314, no. 2 (February 2016), pp. 70–71.
  119. ^ See EATCS on the Gödel Prize 1995 Archived 4 August 2007 at the Wayback Machine.
  120. S2CID 116951785
    .
  121. ^ Richard Panek, "The Cosmic Surprise: Scientists discovered dark energy 25 years ago. They're still trying to figure out what it is", Scientific American, vol. 329, no.5 (December 2023), pp. 62–71.
  122. Lawrence M. Krauss, "What Einstein Got Wrong: Cosmology", Scientific American
    , vol. 313, no. 3 (September 2015), p. 55.
  123. ^ Randerson, James; Sample, Ian (6 October 2015). "Kajita and McDonald win Nobel physics prize for work on neutrinos". The Guardian. Retrieved 6 October 2015.
  124. ^ Jerome Groopman, "The Body Strikes Back" (review of Matt Richtel, An Elegant Defense: The Extraordinary New Science of the Immune System: A Tale in Four Lives, William Morrow, 425 pp.; and Daniel M. Davis, The Beautiful Cure: The Revolution in Immunology and What It Means for Your Health, University of Chicago Press, 260 pp.), The New York Review of Books, vol. LXVI, no. 5 (21 March 2019), pp. 22–24.
  125. S2CID 16336889
    .
  126. ].
  127. ^ [7] Press release: The Nobel Prize in Physics 2020.
  128. ^ Cohen, J. (4 June 2018). "With prestigious prize, an overshadowed CRISPR researcher wins the spotlight". Science. Retrieved 2 May 2020.
  129. ^ "Lithuanian scientists not awarded Nobel prize despite discovering same technology". LRT.lt. 8 October 2020.
  130. ^ "Surprise! It's a Nobel Prize", UCSF Magazine, Winter 2022, pp. 28–29.
  131. multiple discoveries
    , adding: "The problems of the age attract the problem solvers of the age, all of whom work more or less within the same constraints and avail themselves of the same existing theories and technologies." (p. 76.)

Bibliography

External links