List of possible impact structures on Earth

Source: Wikipedia, the free encyclopedia.

According to the Planetary and Space Science Centre (PASSC) at the University of New Brunswick in Canada, there are 190 confirmed impact structures on Earth. Each is recorded in a database called the Earth Impact Database (EID).[1]

List of confirmed and possible impact structures

The following tables list geological features on Earth that are known impact events as well as possible, but for which there is currently no confirming scientific evidence in the peer-reviewed literature, impact events. In order for a structure to be

confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005),[2] African (2014),[3] and South American (2015)[4] craters, as well as those in the Arab world (2016).[5] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures.[6]

Name Location Country Diameter (km) Age (
Ma
)
Confirmed Notes Image Coordinates
38th Parallel structures Missouri, etc. United States 2-17 320 ± 10 [7]
37°30′N 88°18′W / 37.5°N 88.3°W / 37.5; -88.3 (Hicks Dome)
37°48′N 90°12′W / 37.8°N 90.2°W / 37.8; -90.2 (Avon crater)
37°48′N 91°24′W / 37.8°N 91.4°W / 37.8; -91.4 (Crooked Creek crater)
37°54′N 92°42′W / 37.9°N 92.7°W / 37.9; -92.7 (Decaturville crater)
37°42′N 92°24′W / 37.7°N 92.4°W / 37.7; -92.4 (Hazelgreen crater)
38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau-Osceola structure)
37°42′N 95°42′W / 37.7°N 95.7°W / 37.7; -95.7 (Rose Dome)
Acraman
South Australia Australia 90 590 Yes [8] 32°1′S 135°27′E / 32.017°S 135.450°E / -32.017; 135.450
Murgab
)
Tajikistan
Tajikistan
0.080 0.0003
(1700 AD)
[9][10][11][12] 38°5′38.5″N 74°16′58″E / 38.094028°N 74.28278°E / 38.094028; 74.28278 (Ak-Bura)
Al Madafi Saudi Arabia Saudi Arabia 6 6-66 [13][14][15] 28°40′N 37°11′E / 28.67°N 37.18°E / 28.67; 37.18 (Al Madafi)
Alamo bolide impact Nevada United States 100 ± 40 367 [16][17] [note 1] 37°19′N 116°11′W / 37.31°N 116.18°W / 37.31; -116.18 (Alamo)
Amelia Creek Northern Territory Australia 20 600-1660 Yes 20°55′S 134°50′E
Ames Oklahoma United States 470 ± 30 Yes 36° 17′ 4″ N, 98° 11′ 38″ W
Amguid Algeria <1 Yes
26° 5′ 16″ N, 4° 23′ 43″ E
Anéfis Mali Mali 3.9 23? [20][9][21][22] 18°04′19″N 0°02′53″W / 18.072°N 0.048°W / 18.072; -0.048 (Anefis)
Aorounga Central Chad Chad 11.6 <345 Yes [23][24][25]
19°13′44″N 19°15′40″E / 19.229°N 19.261°E / 19.229; 19.261 (Aorounga center)
Aouelloul Mauritania Mauritania 0.39 3.0 ± 0.3 Yes
Araguainha Central Brazil Brazil 40 244.4 Yes 16°47′S 52°59′W
Arganaty Almaty region Kazakhstan 300 250 [26][27][28][note 1] 46°30′N 79°48′E / 46.5°N 79.8°E / 46.5; 79.8 (Arganaty)
Arlit Niger Niger 10 ? [29][30][31] 21°21′11″N 9°08′42″E / 21.353°N 9.145°E / 21.353; 9.145 (Arlit)
Avak Alaska United States 12 3-95 Yes [32]
Azuara Spain Spain 35-40 30-40 [33]
41°07′N 0°13′W / 41.117°N 0.217°W / 41.117; -0.217 (Azuara)
Bajada del Diablo Argentina Argentina 40 0.45 ± 0.3 [34][35][36] 42°49′S 67°28′W / 42.817°S 67.467°W / -42.817; -67.467 (Bajada del Diablo)
Bajo Hondo Argentina Argentina 3.9 <10 [37][38] 42°17′44″S 67°55′27″W / 42.295454°S 67.924133°W / -42.295454; -67.924133 (Bajo Hondo)
Bangui magnetic anomaly Central African Republic Central African Republic 600-800? >542 [39][3][40]
6°00′N 18°18′E / 6°N 18.3°E / 6; 18.3 (Bangui)
Barringer Meteorite
Arizona United States 1.18 0.049 ± 0.003 Yes [41]
Bateke Plateau
Gabon Gabon 7.1 <2.6 [42][43] 0°38′45″S 14°27′29″E / 0.64583°S 14.45806°E / -0.64583; 14.45806 (Bateke)
Beaverhead Montana United States 60 600 Yes 44°15′N 114°0′W
Bedout Australia (offshore) Australia 250 250 [44][45][2] 18°S 119°E / 18°S 119°E / -18; 119 (Bedout)
Beyenchime-Salaatin Russia Russia 8 40 ± 20 Yes
Bee Bluff Texas United States 2.4 40? [46][47][48][note 1] 29°02′N 99°51′W / 29.03°N 99.85°W / 29.03; -99.85 (Bee Bluff)
Bigach Kazakhstan Kazakhstan 8 5 ± 3 Yes
Björkö
Björkö, Ekerö
Sweden 10 1200 [49][50] 59°18′N 17°36′E / 59.30°N 17.60°E / 59.30; 17.60 (Björkö)
Bloody Creek Nova Scotia Canada 40 ? [51] 44°45′N 65°14′W / 44.750°N 65.233°W / 44.750; -65.233 (Bloody Creek)
Bohemian Czech Republic Czech Republic 260-300 >700? [52][9][53][54] 50°00′N 14°42′E / 50.0°N 14.7°E / 50.0; 14.7 (Bohemian)
Boltysh Kirovohrad Oblast Ukraine 24 65.17 Yes 48°54′N 32°15′E
Bow City Alberta Canada 8 70 [55] 50°25′N 112°16′W / 50.417°N 112.267°W / 50.417; -112.267 (Bow City)
Bowers Antarctic Ocean (Ross Sea) 100 3-5 [56][57][58][59] 71°12′S 176°00′E / 71.2°S 176°E / -71.2; 176 (Bowers)
Brushy Creek Feature Louisiana United States 2.0 0.011–0.030 [60][61][62][63] 30°46′N 90°44′W / 30.76°N 90.73°W / 30.76; -90.73 (Brushy Creek Feature)
Bukit Bunuh Perak Malaysia 5–6 1.34–1.84 [64][65] 5°04′30″N 100°58′30″E / 5.075°N 100.975°E / 5.075; 100.975 (Bukit Bunuh)
Burckle
Indian Ocean 30? 3000 BC [66][67][68] 30°52′S 61°22′E / 30.86°S 61.36°E / -30.86; 61.36 (Burckle)
Carswell
Saskatchewan Canada 39 115 Yes 58°27′N 109°30′W
Catalina
structures
(Navy, Catalina, Emery Knoll)
Pacific Ocean (NE) 12, 32, 37 16-18 [69][70][71] 32°55′N 118°05′W / 32.91°N 118.09°W / 32.91; -118.09 (Catalina)
Cerro do Jarau Paraná Brazil 10 117 [72][73][74] 30°12′S 56°32′W / 30.200°S 56.533°W / -30.200; -56.533 (Cerro)
Charity Shoal Ontario Canada 1.2 <470 [75][76][77][78]
44°2′15″N 76°29′37″W / 44.03750°N 76.49361°W / 44.03750; -76.49361 (Charity Shoal)
Charlevoix Quebec Canada 54 342 Yes 47°32′N 70°18′W
Chesapeake Bay Virginia United States 40 34.86 ± 0.23 Yes [79] 37°17′N 76°1′W
Clearwater East Quebec Canada 26 460-470 Yes [80]
Clearwater West Quebec Canada 36 290 Yes 56°13′N 74°30′W
Chicxulub Yucatán Mexico 150 66.051 ± 0.031 Yes 21°20′N 89°30′W
Corossol Quebec Canada 4 <470 [81][82][83][84] 50°03′N 66°23′W / 50.050°N 66.383°W / 50.050; -66.383 (Corossol)
Darwin Crater Tasmania Australia 1.2 0.816 [85][note 1]
42°19′S 145°40′E / 42.317°S 145.667°E / -42.317; 145.667 (Darwin crater)
Decorah Iowa United States 5.6 470 [86][87][88]
43°18′50″N 91°46′20″W / 43.31389°N 91.77222°W / 43.31389; -91.77222 (Decorah)
Deniliquin New South Wales Australia 520 400–500 No 35°32′0″S 144°58′0″E / 35.53333°S 144.96667°E / -35.53333; 144.96667 (Deniliquin)
Dhala
Madhya Pradesh India 11 1700-2100 Yes 25°18′N 78°8′E
Diamantina River ring feature Queensland Australia 120 300 [89][90]
22°09′S 141°54′E / 22.150°S 141.900°E / -22.150; 141.900 (Winton crustal anomaly)
Dumas magnetic anomaly Saskatchewan Canada 3.2 70 ± 5 [91][92] 49°55′N 102°07′W / 49.92°N 102.12°W / 49.92; -102.12 (Dumas)
Duolun Inner Mongolia China 120 ± 50 129 ± 3 [93][94] 42°3′N 116°15′E / 42.050°N 116.250°E / 42.050; 116.250 (Duolun)
El-Baz Egypt Egypt 4 ? [95][25][96] 24°12′N 26°24′E / 24.200°N 26.400°E / 24.200; 26.400 (El-Baz)
Eltanin Pacific Ocean (SE) 35? 2.5 [97][98][99][note 1] 57°47′S 90°47′W / 57.783°S 90.783°W / -57.783; -90.783 (Eltanin)
Faya Basin Chad Chad 2 385 ± 15 [100][101] 18°10′N 19°34′E / 18.167°N 19.567°E / 18.167; 19.567 (Faya)
Falkland Plateau anomaly Atlantic Ocean
(near Falkland Islands)
250-300 250 [102][103][104][105][106] 51°S 62°W / 51°S 62°W / -51; -62 (Malvinas)
Fried Egg structure Atlantic Ocean (near Azores) 6 17 [107][108] 36°N 27°W / 36°N 27°W / 36; -27 (Fried Egg)
Garet El Lefet Libya Libya 3 ? [109][110][111] 25°00′N 16°30′E / 25.0°N 16.5°E / 25.0; 16.5 ("Garet El Lefet")
Gatun Panama Panama 3 20 [112][113][114] 09°05′58″N 79°47′22″W / 9.09944°N 79.78944°W / 9.09944; -79.78944 (Gatun structure)
General San Martín Argentina Argentina 11 1.2 [115][116][117] 38°0′S 63°18′W / 38.000°S 63.300°W / -38.000; -63.300 (General San Martin)
Gnargoo Western Australia Australia 75 <300 [118][119] 24°48′24″S 115°13′29″E / 24.80667°S 115.22472°E / -24.80667; 115.22472 (Gnargoo)
Gosses Bluff
Northern Territory Australia 22 142.5 Yes 23°49′S 132°18′E
Guarda Portugal Portugal 30 200 [120][121][122] 40°38′N 07°06′W / 40.633°N 7.100°W / 40.633; -7.100 (Guarda)
Hartney anomaly Manitoba Canada 8 120 ± 20 [123][92][124] 49°24′N 100°40′W / 49.4°N 100.67°W / 49.4; -100.67 (Hartney)
Haughton Nunavut Canada 23 39 Yes 75°23′N 89°40′W
Hiawatha Greenland Greenland 31 57.99 ± 0.54 [125][126][127]
78°44′N 66°14′W / 78.733°N 66.233°W / 78.733; -66.233 (Hiawatha)
Hico Texas United States 9 <60 [128][129][130] 32°01′N 98°02′W / 32.01°N 98.03°W / 32.01; -98.03 (Hico)
Hotchkiss Alberta Canada 4 220 ± 100 [131][132] 57°32′20″N 118°52′41″W / 57.539°N 118.878°W / 57.539; -118.878 (Hotchkiss)
Howell Tennessee United States 2.5 380 ± 10 [133][134][135] 35°14′N 86°37′W / 35.23°N 86.61°W / 35.23; -86.61 (Howell)
Ibn-Batutah Libya Libya 2.5 120 ± 20 [136][137] 21°34′10″N 20°50′15″E / 21.56944°N 20.83750°E / 21.56944; 20.83750 (Ibn-Batutah)
Ilumetsa Põlva County Estonia 0.08 0.0066
(<4600 BC)
[138][139] 57°57′N 27°24′E / 57.950°N 27.400°E / 57.950; 27.400
Ishim Akmola region Kazakhstan 300 430-460 [140][141][142][note 1] 52°0′N 69°0′E / 52.000°N 69.000°E / 52.000; 69.000 (Ishim Akmola)
Iturralde Bolivia Bolivia 8.0 0.011–0.030 [143]
12°35′S 67°40′W / 12.583°S 67.667°W / -12.583; -67.667 (Iturralde)
Jackpine Creek magnetic anomaly British Columbia Canada 25 120 ± 20 [144][145] 55°36′N 120°06′W / 55.6°N 120.1°W / 55.6; -120.1 (Jackpine)
Jalapasquillo Puebla Mexico 1.2 <10 [146][147] 19°13′23″N 97°25′44″W / 19.2231°N 97.429°W / 19.2231; -97.429 (Jalapasquillo)
Jebel Hadid Libya Libya 4.7 <66 [148][149] 20°52′12″N 22°42′18″E / 20.87000°N 22.70500°E / 20.87000; 22.70500 (Jebel Hadid)
Jeptha Knob Kentucky United States 4.3 425 [150][note 1] 38°11′N 85°07′W / 38.183°N 85.117°W / 38.183; -85.117 (Jeptha Knob)
Johnsonville South Carolina United States 11 300? [151][9][152][note 1] 33°49′N 79°22′W / 33.817°N 79.367°W / 33.817; -79.367 (Snows Island)
Jwaneng South Botswana Botswana 1.3 <66 [153][154] 24°42′S 24°46′E / 24.700°S 24.767°E / -24.700; 24.767 (Jwaneng South)
Kamensk Southern Federal District Russia 25 49 Yes 48°21′N 40°30′E
Kebira
Egypt Egypt 31 100 [155][156]
24°40′N 24°58′E / 24.667°N 24.967°E / 24.667; 24.967 (Kebira)
Kilmichael Mississippi United States 13 45 [157][158][159][160] 33°30′N 89°33′W / 33.5°N 89.55°W / 33.5; -89.55 (Kilmichael)
Krk Croatia Croatia 12 40 [161][162] 45°04′N 14°37′E / 45.06°N 14.62°E / 45.06; 14.62 (Krk)
Kurai Basin
Altai Region
Russia 20 <200 [163][164] 50°12′N 87°54′E / 50.200°N 87.900°E / 50.200; 87.900 (Kurai)
La Dulce Argentina Argentina 2.8 0.445? [165][116] 38°13′S 59°13′W / 38.21°S 59.21°W / -38.21; -59.21 (La Dulce)
Labynkyr
Russia Russia 67 150? [166][9][167][168][note 1] 62°19′30″N 143°05′24″E / 62.325°N 143.090°E / 62.325; 143.090 (Labynkyr)
Lac Iro Chad Chad 13 ? [169][3][170]
10°10′N 19°40′E / 10.167°N 19.667°E / 10.167; 19.667 (Iro Lake)
Lairg Gravity Low Scotland Scotland 40 1200 [171] 58°1′12″N, 4°24′0″W
Lake Cheko Siberia Russia 50 0.0001
(1908 AD)
[172] 60°57′50″N 101°51′36″E / 60.964°N 101.86°E / 60.964; 101.86 (Cheko)
Lake Tai (Tai Hu) Jiangsu China 70 ± 5 365 ± 5 [173][174][175] 31°14′N 120°8′E / 31.233°N 120.133°E / 31.233; 120.133 (Tai)
Loch Leven Scotland Scotland 18x8 290 [176][177] 56°12′N 3°23′W / 56.200°N 3.383°W / 56.200; -3.383 (Loch Leven)
Lonar Deccan Plateau, Southern India India 1.83 0.57 ± 0.05 Yes [178]
Lorne Basin New South Wales Australia 30 250 ± 2 [179][180] 31°36′S 152°37′E / 31.60°S 152.62°E / -31.60; 152.62 (Lorne)
Lycksele 2 Sweden Sweden 130 1500 ± 300 [181][182][183] 64°55′N 18°47′E / 64.92°N 18.78°E / 64.92; 18.78 (Lycksele)
Madagascar 3 Madagascar Madagascar 12 ? [184][185] 18°50′20″S 46°13′16″E / 18.839°S 46.221°E / -18.839; 46.221 (Madagascar)
Magyarmecske anomaly Hungary Hungary 7 299 [186][187] 45°57′N 17°58′E / 45.95°N 17.97°E / 45.95; 17.97 (Magyarmecske)
Mahuika New Zealand (offshore) New Zealand 20? 0.0006
(1400 AD)
[188][189][67] 48°18′S 166°24′E / 48.3°S 166.4°E / -48.3; 166.4 (Mahuika)
Manicouagan Quebec Canada 100 215.56 ± 0.05 Yes 51°23′N 68°42′W
Maniitsoq Greenland Greenland 100 3000 [190][191][192] 65°15′N 51°50′W / 65.250°N 51.833°W / 65.250; -51.833 (Maniitsoq)
Mejaouda (El Mrayer) Mauritania Mauritania 3 <542? [193][9][111][21][194] 22°43′19″N 7°18′43″W / 22.722°N 7.312°W / 22.722; -7.312 (Mejaouda)
Merewether
Newfoundland
Canada 20 0.0009
(1100 AD)
[195][196][note 1] 58°02′N 64°03′W / 58.04°N 64.05°W / 58.04; -64.05 (Merewether)
Meseta de la Barda Negra Argentina Argentina 1.5 4 ± 1 [197][198] 39°10′S 69°53′W / 39.167°S 69.883°W / -39.167; -69.883 (Barda Negra)
Middle-Urals Ring Russia Russia 400–550 >542 [199][200][201] 56°N 56°E / 56°N 56°E / 56; 56 (Urals Ring)
Mistassini-Otish Quebec Canada 600 2200 [202][203] 50°34′N 73°25′W / 50.57°N 73.42°W / 50.57; -73.42 (Mistassini lake)
Mount Ashmore dome Indian Ocean (in Timor Sea) >50 35 [204][205][206] 12°33′S 123°12′E / 12.55°S 123.2°E / -12.55; 123.2
Mousso Chad Chad 3.8 <542 [207][208] 17°58′N 19°53′E / 17.967°N 19.883°E / 17.967; 19.883 (Mousso)
Mt. Oikeyama Japan Japan 90 0.030? [209][210] 35°24′18″N 138°00′47″E / 35.405°N 138.013°E / 35.405; 138.013 (Oikeyama)
Mulkarra South Australia Australia 17 105 [211][212] 27°51′S 138°55′E / 27.85°S 138.92°E / -27.85; 138.92 (Mulkarra)
Nastapoka (Hudson Bay) arc Quebec Canada 450 1800? [213][9][214][215]
57°00′N 78°50′W / 57.000°N 78.833°W / 57.000; -78.833 (Hudson Bay)
Nadir Atlantic Ocean (Guinea Plateau, West Africa) ≥8.5 66 ± 0.8 [216] 9°24′N 17°06′W / 9.4°N 17.1°W / 9.4; -17.1 (Nadir)
Ouro Ndia Mali Mali 3 <2.6 [217][9][21] 14°59.8′N 4°30.0′W / 14.9967°N 4.5000°W / 14.9967; -4.5000 (Ouro Ndia)
Pantasma Nicaragua Nicaragua 10 ? [218] 13°22′N 85°57′W / 13.37°N 85.95°W / 13.37; -85.95 (Pantasma)
Panther Mountain New York United States 10 375 [219][220][221]
42°03′N 74°24′W / 42.050°N 74.400°W / 42.050; -74.400 (Panther Mountain)
Peerless Montana United States 6 470 ± 10 [222][223] 48°48′N 105°48′W / 48.8°N 105.8°W / 48.8; -105.8 (Peerless)
Piratininga Paraná Brazil 12 117 [224][73][225] 22°28′S 49°09′W / 22.467°S 49.150°W / -22.467; -49.150 (Piratininga)
Popigai Siberia Siberia 100 35.7±0.2 Yes 71°39′N 111°11′E
Praia Grande Santos Basin, offshore Brazil 20 84 [226][73][74] 25°39′S 45°37′W / 25.650°S 45.617°W / -25.650; -45.617 (prai grande)
Ramgarh Rajasthan India 3 ? [227][228][229][note 1]
25°20′16″N 76°37′29″E / 25.33778°N 76.62472°E / 25.33778; 76.62472 (Ramgarh)
Ross Antarctic Ocean (Ross Sea) 600? <38 [230][57][231] 77°30′S 178°30′E / 77.5°S 178.5°E / -77.5; 178.5 (Ross)
Rubielos de la Cérida Spain Spain 80x40 30-40 [232][233][234][note 1]
40°46′59″N 1°15′00″W / 40.783°N 1.25°W / 40.783; -1.25 (Rubielos)
Sakhalinka Pacific Ocean (NW) 12 70 [235][236][237][238][239] 30°15′N 170°03′E / 30.250°N 170.050°E / 30.250; 170.050 (Sakhalinka)
São Miguel do Tapuio Piauí Brazil 22 120 [240][9][74][241][242][243] 5°37.6′S 41°23.3′W / 5.6267°S 41.3883°W / -5.6267; -41.3883 (Sao Miguel Do Tapuio)
Shanghewan Jilin China 30 ? [244][245][246] 44°29′N 126°11′E / 44.483°N 126.183°E / 44.483; 126.183 (Shangewan)
Shiva Indian Ocean 500 66 [247] 18°40′N 70°14′E / 18.667°N 70.233°E / 18.667; 70.233 (Shiva)
Shiyli Kazakhstan Kazakhstan 5.5 46 ± 7 [248][249][note 1] 49°10′N 57°51′E / 49.167°N 57.850°E / 49.167; 57.850 (Shiyli)
Silverpit Atlantic Ocean (North Sea) 20 60 ± 15 [250][251][252][253][254][255][256][257]
54°14′N 1°51′E / 54.233°N 1.850°E / 54.233; 1.850 (Silverpit)
Sirente Italy Italy 10 0.0017
(320 ± 90 AD)
[258][259] 42°10′38″N 13°35′45″E / 42.17722°N 13.59583°E / 42.17722; 13.59583 (Sirente)
Sithylemenkat Lake Alaska United States 12 0.033? [260][261][262][263] 66°07′34″N 151°23′20″W / 66.12611°N 151.38889°W / 66.12611; -151.38889 (Sithylemenkat)
Smerdyacheye Lake
Russia Russia 20 0.01–0.03? [264][265] 55°44′06″N 39°49′23″E / 55.735°N 39.823°E / 55.735; 39.823 (Smerdyacheye)
Sudan 1 (
Red Sea Hills
)
Sudan Sudan 6 ? [266][267][268] 17°57.1′N 37°56.1′E / 17.9517°N 37.9350°E / 17.9517; 37.9350 (Red Sea)
Sudan 2 (Bayuda) Sudan Sudan 10 ? [269][270][271]
A map of Sudan showing three craters
Mahas
Mahas
Bayuda
Bayuda
Red Sea Hills
Red Sea Hills
18°03.5′N 33°30.2′E / 18.0583°N 33.5033°E / 18.0583; 33.5033 (Bayuda)
Sudan 3 (Mahas) Sudan Sudan 2.8 ? [citation needed] 20°01.9′N 30°13.7′E / 20.0317°N 30.2283°E / 20.0317; 30.2283 (Mahas)
Sudbury Ontario Canada 130 1849 Yes 46°36′N 81°11′W
Svetloyar Lake Russia Russia 40 0.0026
(600 BC)
[272][273][note 1] 56°49′08″N 45°05′35″E / 56.819°N 45.093°E / 56.819; 45.093 (Svetloyar)
Takamatsu Japan Japan 4-8 15 [274][275][276][277][278] 34°18′N 134°03′E / 34.3°N 134.05°E / 34.3; 134.05 (Takamatsu)
Tarek (Gilf Kebir) Egypt Egypt 2.1 112? [279][9][280][281] 24°36′04″N 27°12′18″E / 24.601°N 27.205°E / 24.601; 27.205 (Tarek)
Tatarsky North Pacific Ocean (NW) 14 ? [282][283] 49°57′35″N 141°23′40″E / 49.95972°N 141.39444°E / 49.95972; 141.39444 (Tatarsky1)
Tatarsky South Pacific Ocean (NW) 20 ? [284][283] 48°17′38″N 141°23′40″E / 48.29389°N 141.39444°E / 48.29389; 141.39444 (Tatarsky2)
Tefé River
Amazonas
Brazil 15 65 ± 20 [285][74][286] 4°57′S 66°03′W / 4.950°S 66.050°W / -4.950; -66.050 (Tefé)
Talundilly
Queensland Australia 84 128 ± 5 [287][288][289] 24°44′S 144°37′E / 24.73°S 144.62°E / -24.73; 144.62 (Talundilly)
Temimichat Mauritania Mauritania 0.7 2? [290][9][291] 24°15′N 9°39′W / 24.250°N 9.650°W / 24.250; -9.650 (Temimichat)
Tsenkher Mongolia Mongolia 3.6 5 [292][293][294] 43°38′41″N 98°22′09″E / 43.64472°N 98.36917°E / 43.64472; 98.36917 (Tsenkher)
Toms Canyon New Jersey United States 22 35 [295][296][297][298] 39°08′N 72°51′W / 39.133°N 72.850°W / 39.133; -72.850 (Toms Canyon)
Kara Nenetsia, offshore Russia 65 70.3 ± 2.2 Yes [299][300]
69°17′N 65°21′E / 69.28°N 65.35°E / 69.28; 65.35 (Ust-Kara)
Vélingara Senegal Senegal 48 23-40 [301][302]
13°02′N 14°08′W / 13.033°N 14.133°W / 13.033; -14.133 (Vélingara)
Versailles Kentucky United States 1.5 <400 [303][304] 38°05′N 84°40′W / 38.09°N 84.67°W / 38.09; -84.67 (Versailles)
Vredefort Free State South Africa 180-300 2023 Yes [305] 27°0′S 27°30′E
Vichada Vichada Colombia 50 30? [306][9]
4°30′N 69°15′W / 4.500°N 69.250°W / 4.500; -69.250 (Vichada)
Victoria Island California United States 5.5 37-49 [307] 37°53′N 121°32′W / 37.89°N 121.53°W / 37.89; -121.53 (Victoria Island structure)
Warburton East South Australia Australia 200 300-360 [308][309][310] 28°00′S 140°30′E / 28°S 140.5°E / -28; 140.5 (Warbuton)
Warburton West South Australia Australia 200 300-360 [308][309][311]
Weaubleau (Weaubleau-Osceola) Missouri United States 19 330 ± 10 [312][313][314]
38°00′N 93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau)
Wembo-Nyama (Omeonga) DR Congo DR Congo 36-46 60? [315][316][317] 3°37′52″S 24°31′07″E / 3.63111°S 24.51861°E / -3.63111; 24.51861 (Wembo-Nyama ring structure)
Wilkes Land 2 Antarctica 480 250-500 [318]
70°S 140°E / 70°S 140°E / -70; 140 (Wilkes)
Wolfe Creek Great Sandy Desert, Western Australia Australia 0.87 < 0.3 Yes
Woodbury Georgia United States 7 500 ± 100 [319][320][321][322] 32°55′N 84°33′W / 32.92°N 84.55°W / 32.92; -84.55 (Woodbury)
Yallalie Western Australia Australia 12 99? [323][9][324][325][326][327][note 1] 30°26′40″S 115°46′16″E / 30.44444°S 115.77111°E / -30.44444; 115.77111 (Yallalie)
Zerelia West Greece Greece 20 0.0070
(5000 BC)
[328][329] 39°09′48″N 22°42′32″E / 39.16333°N 22.70889°E / 39.16333; 22.70889 (Zerelia West)
Zerelia East Greece Greece 10 0.0070
(5000 BC)
[328][329] 39°09′43″N 22°42′51″E / 39.16194°N 22.71417°E / 39.16194; 22.71417 (Zerelia East)

Overview

Russia's

better source needed
]

The

Harappan civilization and mentioned as a fireball in Sanskrit texts.[333]

Shortly after the Hiawatha Crater was discovered, researchers suggested that the impact could have occurred as late as ~12,800 years ago, leading some to associate it with the controversial

YDIH said, "I'd unequivocally predict that this crater is the same age as the Younger Dryas."[335]

These claims were criticised by other scholars. According to impact physicist

YDIH has since been refuted comprehensively by a team of earth scientists and impact experts.[337]

A 2022 study using Argon–Argon dating of shocked zircon crystals in impact melt rocks found outwash less than 10 km downstream of the glacier pushed the estimate back to around 57.99 ± 0.54 million years ago, during the late Paleocene.[338][127] Confirmation would require drilling almost one km (3,300 ft) through the ice sheet above the crater to obtain a sample of dateable, solidified impact melt from the crater.

The age of the Bloody Creek crater[339] is uncertain.

As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi)

ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina,[343][344] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure.[345]

The

better source needed
]

Several twin impacts have been proposed, such as the Rubielos de la Cérida and Azuara (30–40 Ma),[347] Cerro Jarau and Piratininga (c. 117 Ma),[73] and Warburton East and West (300–360 Ma).[348] However, adjacent craters may not necessarily have formed at the same time, as demonstrated by the case of the confirmed Clearwater East and West lakes.

Some confirmed impacts like

gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek,[145] the gravity anomalies Wilkes Land crater and Falkland Islands,[350] and others have been considered as being of impact origin. Bangui apparently has been discredited,[25][351] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl.[3]

Several anomalies in

astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed.[92]

The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary.[352][353] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.

Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.

For example, the Ishim impact structure

Chicxulub impact caused the one for Cretaceous–Paleogene
(c. 66 Ma).

However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).

Undiscovered but inferred

strewnfield. Shaded areas represent tektite
finds.

There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete, or because no actual crater was formed because the impacting object exploded as a cosmic air burst. Typically the ages are already known and the diameters can be estimated.

Parent crater of Expected crater diameter Age Notes
Pica glass Unknown 12 ka [357]
Libyan desert glass Unknown 29 Ma [358][359][360][361]
Dakhleh glass 0.4 km 150 ka [362][363]
Argentinian impact glasses Unknown 6, 114, and 445 ka;

5.3 and 9.2 Ma

[364][365][366]
Australasian tektites
32–114 km 780 ka [344]
Central American tektites 14 km 820 ka [367][368][369]
Skye ejecta deposits Unknown 60 Ma [370]
Stac Fada Member 40 km 1.2 Ga [371][372][373]
Barberton Greenstone Belt spherules 500 km 3.2 Ga [374][375]
Marble Bar impact spherules "hundreds of kilometers" 3.4 Ga [376]

Mistaken identity

Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are

tuff rings, forest rings, and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome
(as a salt dome).

The presence of

shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite".[377]

See also

Notes and references

Notes

  1. ^ a b c d e f g h i j k l m n o Shown as "proven" by Mikheeva (2017),[18][unreliable source?] not "confirmed" by EID (2018).[19]

References

  1. ^ updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see". Space.com. Retrieved 2023-02-05.
  2. ^
    S2CID 128705406
    .
  3. ^ .
  4. .
  5. ^ Chabou, M. C. (2016). "An updated inventory of meteorite impact structures in the Arab world". 1st ArabGU International Conference, Feb 2016, Algeria.
  6. .
  7. . Retrieved 2019-04-06.
  8. ^ "Acraman". www.passc.net. Retrieved 2023-02-05.
  9. ^ a b c d e f g h i j k l m Expert Database on Earth Impact Structures (EDEIS), Accessed May 2016
  10. ^ Murgab
  11. ^ "Meteorite crater site of Ak-Bura". Archived from the original on 2016-06-05. Retrieved 2016-05-12.
  12. ^ Bacharev, A (1952), The Murgab meteorite crater. Astron. Tsirk., No 122, pp. 8–10
  13. ^ Al Madafi
  14. .
  15. ^ Roger Weller. Al Madafi crater Archived 2016-09-17 at the Wayback Machine
  16. ^ Warme, J.E.; Sandberg, C.A. (1996). "Alamo megabreccia: record of a Late Devonian impact in southern Nevada" (PDF). GSA Today. 6 (1): 1–7.
  17. .
  18. ^ Mikheeva, 2017.[full citation needed]
  19. ^ List of confirmed impact craters by name - Earth Impact Database
  20. ^ Anefis
  21. ^ a b c A. Rossi (2002). Seven Possible New Impact Structures In Western Africa Detected On Aster Imagery, Lunar and Planetary Science XXXIII
  22. ^ Roger Weller Anefis crater Archived 2016-09-17 at the Wayback Machine
  23. ^ Aorounga
  24. .
  25. ^ a b c S. Master & W. Reimold (2000). The impact cratering record of Africa: An updated inventory of proven, probable, possible, and discredited impact structures on the African continent, Catastrophic Events Conference 2000.
  26. ^ Arganaty
  27. .
  28. .
  29. ^ Unnamed ("Arlit")
  30. ^ David Rajmon (2010). Impact Field Studies Group
  31. ^ Marc Fokker (2008). Astroforum Netherlands Archived 2015-04-02 at the Wayback Machine
  32. ^ "Avak". www.passc.net. Retrieved 2023-02-05.
  33. ^ Azuara
  34. ^ Bajada del Diablo
  35. ^ R. D. Acevedo, J. Rabassa, M. J. Orgeira, et al. (2010) Bajada Del Diablo Impact Crater Strewn-Field, Patagonia, Argentina: The Largest Crater Field In The World? 73rd Annual Meteoritical Society Meeting
  36. .
  37. ^ Bajo Hondo
  38. ^ M. C. Rocca (2005). BAJO HONDO, CHUBUT, PATAGONIA, ARGENTINA: A NEW METEORITE IMPACT CRATER IN BASALT?, 68th Annual Meteoritical Society Meeting
  39. ^ Bangui
  40. .
  41. ^ "Barringer Meteor Crater and Its Environmental Effects". www.lpi.usra.edu. Retrieved 2023-02-05.
  42. ^ Bateke
  43. ^ S. Master, G.R.J. Cooper and K. Klajnik (2013). The Bateke Plateau Structure – A New Possible 7 Km Diameter Quaternary Meteorite Impact Structure In Gabon: A Remote Sensing Study, 13th SAGA Biennial Conference & Exhibition
  44. ^ Bedout
  45. S2CID 17927307
    .
  46. ^ Bee Bluff
  47. ^ R. A. Graham (2005) Reinvestigation of the Bee Bluff Structure South of Uvalde, Texas, 'The Uvalde Crater'. Lunar and Planetary Science XXXVI (2005)
  48. ^ Bee Bluff
  49. ^ Björkö
  50. ^ H. Henkel, A. Bäckström, B. Bergman, O. Stephansson, and M. Lindström (2005). Geothermal Energy from Impact Craters? The Björkö Study, Proceedings World Geothermal Congress 2005
  51. ^ Bloody Creek
  52. ^ Bohemia
  53. .
  54. Bibcode:1992LPICo.790...57R. LPI Contribution 790. {{cite book}}: |journal= ignored (help
    )
  55. ^ Bow City
  56. ^ Bowers
  57. ^ a b L. P. Hrjanina (Khryanina), 2006. "Once again about Kainozoic meteorite structures in the Ross Sea, Antarctica" (PDF).{{cite web}}: CS1 maint: numeric names: authors list (link)
  58. ^ Gerard-Little, P.; Abbott, D.; Breger, D.; Burckle, L (2006). "Evidence for a Possible Late Pliocene Impact in the Ross Sea, Antarctica".
  59. ^ Paul Rincon (2006). Space impact clue in Antarctica, BBC News
  60. ^ Heinrich, P.V. (2003) Possible Meteorite Impact Crater in St. Helena Parish, Louisiana Search and Discovery Article. no. 50006. American Association of Petroleum Geologist, Tulsa, Oklahoma. Retrieved March 27, 2011.
  61. ^ King, D.T., Jr., and Petruny, L.W.. 2007. Impact structures and craters of the U.S. Gulf coastal states. Gulf Coast Association of Geological Societies Transactions. v. 57, p. 409-425.
  62. ^ Matherne, C., Karunatillake, S., Hood, D.R., Duxbury, J., Herr, A., Heinrich, P., Horn, M., Webb, A. and Sivils, A., 2020. Planar Deformation Features Found Within a Possible Impact Structure, the Brushy Creek Feature, St. Helena Parish, LA. Lunar and Planetary Science Conference No. 2326, p. 2361.
  63. ^ Herr, Andrew. "Investigating the Brushy Creek Impact Crater" (PDF). Houston lunar and planetary science conference.
  64. .
  65. .
  66. ^ Burckle
  67. ^ a b Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
  68. ^ Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
  69. ^ Catalina
  70. .
  71. .
  72. ^ Jarau
  73. ^ a b c d A. Crósta, R. Romano (2004). Brazilian Impact Craters: A Review, 35th Lunar and Planetary Science Conference
  74. ^ a b c d A. Crósta, M. Vasconcelos (2013). Update On The Current Knowledge Of The Brazilian Impact Craters, 44th Lunar and Planetary Science Conference
  75. ^ Charity Shoal
  76. .
  77. .
  78. ^ Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
  79. ^ Assis Fernandes V., Hopp J., Schwarz W.H., Fritz J.P., and Trieloff M. (2019) 40Ar-39Ar step heating of North American tektites and of impact melt rock samples from the Chesapeake Bay impact structure. Geochimica et Cosmochimica Acta 255, 289-308. https://doi.org/10.1016/j.gca.2019.03.004
  80. ^ "Clearwater East". www.passc.net. Retrieved 2023-02-06.
  81. ^ Corossol
  82. ^ Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
  83. S2CID 140639070
    .
  84. ^ Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
  85. ^ Darwin
  86. ^ Decorah
  87. S2CID 85450625
    .
  88. ^ French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E. and Witzke, B.J., 2018. "The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact." Geological Society of America Bulletin, 130(11–12), pp. 2062–2086.
  89. ^ "Potential asteroid impact identified in western Queensland". Geoscience Australia. 2015-03-17. Retrieved 26 June 2016.
  90. S2CID 132501378
    . Retrieved 2019-04-06.
  91. ^ Dumas
  92. ^ a b c Gubins, A. & Strangway, D. (1978). "Magnetic Fields Associated with a Probable Late Cretaceous Astrobleme at Dumas, Saskatchewan", Lunar and Planetary Science IX, pp. 433–435
  93. ^ Duolun
  94. .
  95. ^ El-Baz
  96. PMID 17760189
    .
  97. ^ Eltanin
  98. ^ Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
  99. .
  100. ^ Faya Basin
  101. ^ M. Schmieder and E. Buchner (2010). The Faya Basin (Chad) revisited – structural insights from central peak morphology and potential Martian analogs, Nördlingen Ries Crater Workshop (2010).
  102. ^ Rocca, Maximiliano C. L.; Presser, Jaime Leonardo Báez; (2015) "A possible new very large impact structure in Falkland Islands", Historia Natural, Tercera Series, Volumen 5(2)
  103. S2CID 134484465
    .
  104. .
  105. .
  106. .
  107. ^ Fried Egg
  108. ^ Amos, J (2009) 'Fried Egg' may be impact crater BBC News.
  109. ^ Garet El Lefet
  110. ^ Roger Weller. Garet El Lefet crater Archived 2016-09-17 at the Wayback Machine
  111. ^ .
  112. ^ Tornabene, L.L., 2001 The Gatun Structure: A geological assessment of a newly recognized impact structure near Lake Gatun in the Republic de Panama. Master of Science thesis. University of South Florida, Tampa, Florida, USA.
  113. ^ Heckadon-Moreno, S, 2013. Livio Tornabene y el meteorito de Gatun. Epocas. 28 (11):10–11.
  114. ^ LeBlanc, J., 2021. Stratigraphic Lexicon: The Onshore Cenozoic Sedimentary Formations of The Republic of Panama. Biosis: Biological Systems, 2(1), pp.1-173.
  115. ^ General San Martín
  116. ^ a b Harris, R. S.; Schultz, P. H.; Zárate, M. A. (2007) La Dulce Crater: Evidence For A 2.8 Km Impact Structure In The Eastern Pampas Of Argentina, 38th Lunar and Planetary Science Conference
  117. ^ R. D. Acevedo, M. Rocca, J. Rabassa and J. F. Ponce Meteorite Impact Craters In South America: A Brief Review. 74th Annual Meteoritical Society Meeting (2011)
  118. ^ Gnargoo
  119. S2CID 128814897
    .
  120. .
  121. ^ Van Zalinge, M. E. (2012). The Guarda structure, NE-Portugal: a meteorite impact crater or not? (Thesis). Utrecht University, Utrecht. p. 83.
  122. ^ Van Zalinge, M. E.; Hamers, M. F.; Drury, M. R. (2012). "The Guarda structure (Portugal): impact structure or not? Microstructural studies of quartz, zircon and monazite". Meteoritics and Planetary Science Supplement. 75: 5045–5046.
  123. ^ Hartney
  124. ^ Anderson, C. (1980). "A Seismic Reflection Study of a Probable Astrobleme near Hartney, Manitoba" (PDF). Canadian Journal of Exploration Geophysics. 16: 7.
  125. ^ Hiawatha
  126. PMID 30443592
    .
  127. ^ .
  128. ^ Hico
  129. ^ J. Glidewell (2009). SEISMIC DATA THROUGH THE HICO STRUCTURE: A POSSIBLE IMPACT FEATURE IN NORTHCENTRAL TEXAS, 40th Lunar and Planetary Science Conference
  130. ^ Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
  131. ^ Hotchkiss
  132. ^ M. Mazur and R. Stewart (1998). Interpreting the Hotchkiss structure: A possible meteorite impact feature in northwestern Alberta, Consortium for Research in Elastic Wave Exploration Seismology (CREWES).
  133. ^ Howell
  134. ^ B. Deane, P. Lee, K. Milam, J. Evenick, and R.Zawislak (2004). THE HOWELL STRUCTURE, LINCOLN COUNTY, TENNESSEE: A REVIEW OF PAST AND CURRENT RESEARCH, Lunar and Planetary Science XXXV
  135. ^ Milam, K. A., Henderson, T., Deane, B. (2014). An Assessment Of Shock Metamorphism In Breccias From The Howell Structure, Lincoln County, Tennessee, US, Abstracts of the 2014 GSA Annual Meeting, Geological Society of America
  136. ^ Ibn-Batutah
  137. .
  138. .
  139. .
  140. ^ Ishim
  141. ^
    Bibcode:1976Metic..11..270D.{{cite journal}}: CS1 maint: numeric names: authors list (link
    )
  142. ^ a b Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
  143. ^ Iturralde
  144. ^ Jackpine Creek
  145. ^ a b S. Goussev, R. Charters, J. Peirce and W. Glenn (2002). Jackpine Creek Magnetic Anomaly: A Case of the HRAM Prospect Scale Interpretation Archived 2016-06-11 at the Wayback Machine. CSEG: The Canadian Society of Exploration Geophysicists
  146. ^ Jalapasquillo
  147. .
  148. ^ Jebel Hadid
  149. .
  150. ^ Jeptha Knob
  151. ^ Snows Island
  152. .
  153. ^ Jwaneng South
  154. ^ Sharad Master, Brad Pitts and Marek Wendorff (2009). Jwaneng South Structure, Botswana: a New 1.3 km Diameter Buried Cenozoic Impact Crater Discovered by Airship-mounted Gravity Gradometer Archived 2016-06-29 at the Wayback Machine, 11th SAGA Biennial Technical Meeting and Exhibition
  155. ^ Kebira
  156. PMID 27065753
    .
  157. ^ Kilmichael
  158. ^ M.S. Huber, D.T. King, Jr., L.W. Petruny, and C. Koeberl (2013). REVISITING KILMICHAEL (MISSISSIPPI), A POSSIBLE IMPACT STRUCTURE, 44th Lunar and Planetary Science Conference
  159. ^ Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
  160. ^ King D.T. Petruny Jr. and L.W. (2002). COSMIC IMPACT IN THE COASTAL PLAIN OF MISSISSIPPI? THE RIDDLE THE OF THE KILMICHAEL STRUCTURE 65th Annual Meteoritical Society Meeting
  161. ^ Krk
  162. ^ T. Marjanac, A. Tomša, Lj. Marjanac, M. Calogovic & S. Fazinic (2015). Krk impact structure ejecta breccia and melt rocks on the islands of Krk and Rab, Croatian Adriatic: A clue on the impact target lithology, Bridging the Gap III (2015)
  163. ^ Kurai Basin
  164. ^ S. A. Vishnevsky (2007). The Kurai Basin, Altai mountains (Russia): First evidences of impact origin, Lunar and Planetary Science XXXVIII (2007)
  165. ^ La Dulce
  166. ^ Labynkyr
  167. .
  168. ^ Roger Weller. Labynkyr ring Archived 2016-09-17 at the Wayback Machine
  169. ^ Lac Iro
  170. ^ James B. Garvin (1986). POSSIBLE IMPACT STRUCTURES IN CENTRAL AFRICA
  171. ^ Lairg
  172. ^ (in Russian) Lake Cheko
  173. ^ Tai Hu
  174. ^ Roger Weller. Tai Hu crater Archived 2016-09-16 at the Wayback Machine
  175. .
  176. ^ Loch Leven
  177. ^ B. J. Hamill (2003). The Loch Leven Crater: Anatomy Of A Low-Angle Oblique Impact Structure, Large Meteorite Impacts
  178. ^ "Lonar". www.passc.net. Retrieved 2023-02-06.
  179. ^ Lorne
  180. .
  181. ^ Lycksele 2
  182. ^ D. Nisca, H. Thunehed, L.J. Pesonen, S-Å. Elming (1997). The Lycksele structure, a huge ring formation in northern Sweden: result of an impact?, Large Meteorite Impacts and Planetary Evolution
  183. S2CID 125579093
    .
  184. ^ Madagascar 3
  185. ^ Roger Weller. Madagascar structure Archived 2016-09-16 at the Wayback Machine
  186. ^ Bodosky, T.; Kis, M.; Kummer, I.; Don, G. (2006). "The telluric conductivity anomaly at Magyarmecske: is it aburied impact crater?". 40th ESLAB–First International Conference on Impact Cratering in the Solar System–Proceedigs CD. Noordwijks, the Netherlands: 221–223.
  187. .
  188. ^ Mahuika
  189. ^ Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
  190. ^ Maniitsoq
  191. .
  192. .
  193. ^ Mejaouda
  194. ^ Roger Weller. Mejaouda crater Archived 2016-09-17 at the Wayback Machine
  195. ^ Merewether crater
  196. ^ J. B. Garvin and J. J. Frawley (2008). Geometric Properties Of The Merewether Structure, Newfoundland, Canada.Lunar and Planetary Science XXXIX (2008)
  197. ^ Meseta de la Barda Negra
  198. ^ A.C. Ocampo, A.C. Garrido, J. Rabassa, M.C. Rocca, J.C. Echaurren, and E. Mazzoni (2005). A Possible Impact Crater In Basalt At Meseta De La Barda Negra, Neuquen, Argentina, 68th Annual Meteoritical Society Meeting
  199. ^ Middle Urals
  200. ^ G. Burba (1991). Middle-Urals Ring structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science conference XXII.
  201. ^ G. Burba (2003). The geologic evolution of the Ural Mountains: A supposed exposure to a giant impact Archived 2021-08-31 at the Wayback Machine. Microsymposium 38, MS011
  202. ^ Mistassini
  203. ^ S. Genest and F. Robert The Mistassini-Otish impact structure, Northern Quebec, Canada: an update – 1987
  204. ^ Mount Ashmore
  205. S2CID 129839418
    .
  206. ^ Examining a new asteroid crater found in the Timor Sea Archived 2016-06-29 at the Wayback Machine. ScienceWise 2010, Australian National Uni
  207. ^ Mousso
  208. .
  209. ^ Oikeyama
  210. ^ Mulkarra
  211. ^ J. B. Plescia (1999). Mulkarra Impact Structure, South Australia: A Complex Impact Structure, Lunar and Planetary Science XXX
  212. ^ Nastapoka
  213. ^ Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
  214. ^ Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
  215. PMID 35977017
    .
  216. ^ Ouro Ndia
  217. ^ Pantasma
  218. ^ Panther Mountain
  219. .
  220. ^ Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
  221. ^ Peerless
  222. ^ J.M. Comstock and J.R. Morrow (2000). PEERLESS STRUCTURE SOUTHWESTERN DANIELS COUNTY, MONTANA: A PROBABLE MIDORDOVICIAN IMPACT EVENT, Lunar and Planetary Science XXXI
  223. ^ Piratininga
  224. ^ Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
  225. ^ Praia Grande
  226. ^ Ramgarh
  227. ^ Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
  228. .
  229. ^ Ross
  230. ^ Berg J.H. (1991). Crustal xenoliths from Cape McCormick crater, Northern Victoria Land . 6th Int. Symp. Antarct. Earth Eci., Ranran-machi, 9–13 Sept., 1991, Abstr. - [Tokyo], p. 49
  231. ^ Rubielos de la Cérida
  232. ^ Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
  233. .
  234. ^ Sakhalinka
  235. ^ B. Levin, E. Gretskaya, G. Nemchenko (2006). A new astrobleme in the Pacific Ocean, Doklady Earth Sciences, 2006, Vol. 411, No. 8, pp. 1336–1338.
  236. ^ Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
  237. .
  238. ^ Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
  239. ^ São Miguel do Tapuio
  240. ^ W. D. MacDonald, A. P. Crosta, J. Francolin (2006) Structural Dome At São Miguel do Tapuio, Piaui, Brazil, 69th Annual Meteoritical Society Meeting
  241. ^ Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
  242. ^ Castelo Branco R.M.G., Lopes de Castro D. (2004). Geological, geophysical and imaging data of Sao Miguel do Tapuio (SMT) astrobleme, Brazil. 67th Annual Meteoritical Society Meeting
  243. ^ Shanghewan
  244. .
  245. .
  246. ^ Shiva
  247. ^ Shiyli
  248. ^ S. A. Vishnevsky (2007). Shiyli Dome, Kazakhstan: Origin Of Central Uplift By Elastic Response, Workshop on Impact Cratering II
  249. ^ Silverpit
  250. S2CID 4381323
    .
  251. ^ Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
  252. ^ Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
  253. ^ Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
  254. ^ Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meteorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
  255. ^ Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
  256. ^ Sirente
  257. .
  258. ^ Mikheeva, A.V., 2019. Sithylemenkat Lake (Sythylemenkat) USA, Alaska, The Complete Catalog of the Earth's Impact structures, ICM&MG SB RAS
  259. S2CID 40015482
    .
  260. ^ Patton Jr, W.W., Miller, T.P. and Cannon, P.J., 1978. Meteorite impact crater in central Alaska. Science, 201(4352), pp. 279–279.
  261. ^ Rajmon, D., 2012. David Rajmon Global Impact Crater GIS Project AAPG Datapages, Tulsa Oklahoma: American Association of Petroleum Geologists.
  262. ^ Smerdyacheye
  263. ^ L. L. Kashkarov, D. D. Badjukov, A. I. Ivliev, G. V. Kalinina, and M. A. Nazarov, Vernadsky (2005). The Smerdyacheye Lake: New Evidence For Impact Origin And Formation Age, Lunar and Planetary Science XXXVI
  264. ^ Red Sea Hills
  265. ^ G. Di Achille (2005). A New Candidate Impact Site In Northeastern Sudan Detected From Remote Sensing, Lunar and Planetary Science XXXVI
  266. ^ Chabou M.Ch. (2016). AN UPDATED INVENTORY OF METEORITE IMPACT STRUCTURES IN THE ARAB WORLD // Conference: First ArabGU International Conference (AIC-1). February 17–18, 2016. At: FSTGAT-USTHB, Algiers, ALGERIA.
  267. ^ Bayuda
  268. ^ A. Sparavigna (2010) Crater-Like Landform in Bayuda Desert (A Processing of Satellite Images)
  269. ].
  270. ^ Svetloyar Lake
  271. ^ V. Feldman, A. Kiselev (2008). Shock-melted impactites at the Svetloyar meteorite crater Volga area, Russia, Lunar and Planetary Science XXXIX
  272. ^ Takamatsu
  273. ^ Y. Miura (2007) Analyses Of Surface And Underground Data Of Takamatsu Crater In Japan. Lunar and Planetary Science XXXVIII
  274. .
  275. ^ Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
  276. ^ Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
  277. ^ Tarek
  278. .
  279. ^ Roger Weller. Tarek crater Archived 2016-09-16 at the Wayback Machine
  280. ^ Tatarsky North
  281. ^ a b B. W. Levin, S. A. Vishnevsky, and N. A. Palchik (2010). Underwater depressions on the bottom of the Tatarsky Strait, the Sea of Japan (western coast of the Sakhalin Island, Russia): possible marine impact craters, 41st Lunar and Planetary Science Conference
  282. ^ Tatarsky South
  283. ^ Tefé
  284. ^ J. de Menezes, C. de Souza, F. Fortes, and C. Filho (1999). Geophysical Evidence Of A Possible Impact Structure At The K-T Boundary Of The Solimões Basin, Brazil Archived 2016-08-08 at the Wayback Machine, 6th International Congress of the Brazilian Geophysical Society
  285. ^ Talundilly
  286. ^ K. Bron (2015) The Tookoonooka-Talundilly tsunami sequence: constraining marine impact stratigraphy, Australian School of Petroleum, The University of Adelaide
  287. PMID 11540422
    .
  288. ^ Temimichat
  289. ^ Roger Weller. Temimichat crater Archived 2016-09-16 at the Wayback Machine
  290. ^ Tsenkher
  291. ^ G. Komatsu et al. (2015)The Tsenkher structure, Gobi-Altai, Mongolia: A probable impact crater with well-preserved rampart ejecta. 46th Lunar and Planetary Science Conference (2015)
  292. ^ Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
  293. ^ Toms Canyon
  294. ^ Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
  295. .
  296. ^ Ust-Kara
  297. ^ C. Koeberl (1990). The Kara/Ust-Kara twin impact structure. Geological Society of America, special paper.
  298. ^ Vélingara
  299. ^ S. Wade, M. Barbieri, J. Lichtenegger (2001) The Velingara Circular Structure ESA Bulletin June 2001
  300. ^ Versailles
  301. .
  302. ^ updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see". Space.com. Retrieved 2023-02-06.
  303. ^ Vichada
  304. ^ Victoria Island
  305. ^ .
  306. ^ a b Glikson, A.Y. and Pirajno, F., 2018. The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia (pp. 61-78). Springer, Cham.,
  307. ^ a b Stephen Luntz (2013). Huge Asteroid Impact Identified. Australasian Science
  308. .
  309. ^ Dulin S. and Elmore R. D. 2008. Paleomagnetism of the Weaubleau structure, southwestern Missouri. In The sedimentary record of meteorite impacts. (pp. 55-64). Geological Society of America Special Paper No. 437.
  310. ^ Evans, K.R., Mickus, K.L., Rovey II, C.W. and Davis, G.H., 2003. Field Trip I: The Weaubleau-Osceola Structure: Evidence of a Mississippian Meteorite Impact in Southwestern Missouri. Association of Missouri Geologists Field Trip Guidebook. 50th Annual Meeting Springfield, Missouri September 26–27, 2003, Missouri Department of Natural Resources, Rollo, MIssouri.
  311. ^ Beauford, R.E., 2015. Physical records of impacts in the early and modern solar system. PhD thesis, University of Arkansas, Fayetteville, Arkansas, 174 p.
  312. ^ Wembo-Nyama
  313. .
  314. ^ "Ring may be giant 'impact crater'". BBC News. 2010-03-10. Retrieved 2010-05-08.
  315. ^ Wilkes Land 2
  316. ^ Woodbury
  317. ^ E. F. Albin and R. S. Harris (2016). WOODBURY ASTROBLEME: FURTHER EVIDENCE FOR A LATE PROTEROZOIC IMPACT STRUCTURE IN WEST-CENTRAL GEORGIA, US, 47th Lunar and Planetary Science Conference
  318. S2CID 195549826
    .
  319. .
  320. ^ Yallalie
  321. S2CID 38389086
    .
  322. ^ Grant, B. The Yallalie Impact Structure.
  323. .
  324. .
  325. ^ a b Zerelia East & West
  326. ^
    S2CID 56034694
    .
  327. British Broadcasting Corporation
    . Retrieved 2009-09-10.
  328. ^ Sandra Blakeslee (2006). Ancient Crash, Epic Wave
  329. ^ Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
  330. ^ R. V. Karanth, P. Thakker, and M. Gadhavi 2006. A preliminary report on the possible impact crater of Kachchh Archived 2016-07-01 at the Wayback Machine, Current Science, vol. 91, no. 7, October 2006
  331. PMID 30443592
    .
  332. ^ a b Voosen P (14 November 2018). "Massive crater under Greenland's ice points to climate-altering impact in the time of humans". Sciencemag.org. Science. Archived from the original on 13 January 2019. Retrieved 13 January 2019.
  333. ^ Boslough M (March 2019). "Crater Discovery Story Flawed by Premature Link to Speculative Impact Hypothesis". Skeptical Inquirer. 43 (2): 6–7.
  334. S2CID 260218223
    .
  335. ^ Copenhagen, University of (9 March 2022). "Giant impact crater in Greenland occurred a few million years after dinosaurs went extinct". phys.org. Archived from the original on 10 March 2022.
  336. ^ Stevens, G; Spooner, I; Morrow, J; Pufahl, P; Raeside, R; Grieve, RAF; Stanley, CR; Barr, SM; McMullin, D (2008). "Physical evidence of a late-glacial (Younger Dryas?) impact event in southwestern Nova Scotia". Atlantic Geology. 44: 42.
  337. .
  338. .
  339. .
  340. ^ Povenmire H., Liu W. and Xianlin I. (1999) "Australasian tektites found in Guangxi Province, China", 30th Annual Lunar and Planetary Science Conference, Houston, March 1999.
  341. ^ .
  342. .
  343. Washington Post
    . Retrieved 19 February 2013.
  344. ^ Ernstson, K.; Claudin, F.; Schüssler, U.; Hradil, K. (2002). "The mid-Tertiary Azuara and Rubielos de la Cérida paired impact structures (Spain)" (PDF). Treb. Mus. Geol. Barcelona. 11: 5–65.
  345. ^ World's largest asteroid impact zone found in Australia: Meteorite broke in two, leaving two craters each 200 km across. Mar 24, 2015
  346. ^ Magnetic anomaly map, Sudbury, Ontario and Quebec. Natural Resources Canada
  347. ^ Rocca, M.; Presser, J. (2015). "A possible new very large impact structure in Malvinas Islands". Historia Natural, Tercera Series. 5 (2).
  348. ^ L. Antoine, W. Reimold, and A. Tessema (1999) The Bangui Magnetic Anomaly Revisited, 62nd Annual Meteoritical Society Meeting
  349. ^ Howard Falcon-Lang (2010). Double space strike 'caused dinosaur extinction', BBC News
  350. S2CID 120172960
    .
  351. ^ Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
  352. ^ Gorder, Pam Frost (June 1, 2006). "Big Bang in Antarctica – Killer Crater Found Under Ice". Ohio State University Research News. Archived from the original on March 6, 2016.
  353. .
  354. .
  355. .
  356. .
  357. .
  358. .
  359. .
  360. ^ G. Osinski, A. Haldemann, et al. (2007). Impact Glass At The Dakhleh Oasis, Egypt: Evidence For A Cratering Event Or Large Aerial Burst?, Lunar and Planetary Science XXXVIII
  361. S2CID 41279356
    .
  362. .
  363. .
  364. ^ Povenmire, H.; Burrer, B.; Cornec, J.H.; Harris, R.S. (2012). "The New Central American Tektite Strewn Field Update" (PDF). 43rd Lunar and Planetary Science Conference, Houston, Texas. Abstract No. 1260.
  365. .
  366. .
  367. .
  368. . Retrieved 5 April 2017.
  369. .
  370. ^ Osinski, G.R.; Ferrière, L.; Hill, P.J.A.; Pave, A.R.; Preston, L.J.; Singleton, A.; Pickersgill, A.E. (2014). "The Mesoproterozoic Stac Fada Member, NW Scotland: an impact origin confirmed but refined". Journal of the Geological Society. 178 (9): no. jgs2020-056.
  371. ^ Sleep, N.H.; Lowe, D.R. (2004). "Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa". Geochemistry, Geophysics, Geosystems. 159 (4): 1045–1070.
  372. .
  373. .
  374. .
  375. ^ Mika McKinnon (2015). This Is Not A Crater, So What Is It? at space.gizmodo.com
  376. .

Bibliography

External links