List of semiconductor scale examples

Source: Wikipedia, the free encyclopedia.

Listed are many

semiconductor manufacturing process
nodes.

Timeline of MOSFET demonstrations

PMOS and NMOS

MOSFET (PMOS and NMOS) demonstrations
Date Channel length Oxide thickness[1] MOSFET logic Researcher(s) Organization Ref
June 1960
20,000 nm
100 nm
PMOS Mohamed M. Atalla, Dawon Kahng
Bell Telephone Laboratories
[2][3]
NMOS
10,000 nm
100 nm PMOS Mohamed M. Atalla, Dawon Kahng Bell Telephone Laboratories [4]
NMOS
May 1965 8,000 nm
150 nm
NMOS Chih-Tang Sah, Otto Leistiko, A.S. Grove Fairchild Semiconductor [5]
5,000 nm
170 nm
PMOS
December 1972 1,000 nm ? PMOS Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu
IBM T.J. Watson Research Center
[6][7][8]
1973 7,500 nm ? NMOS Sohichi Suzuki NEC [9][10]
6,000 nm ? PMOS ? Toshiba [11][12]
October 1974 1,000 nm
35 nm
NMOS Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu IBM T.J. Watson Research Center [13]
500 nm
September 1975 1,500 nm
20 nm
NMOS Ryoichi Hori, Hiroo Masuda, Osamu Minato Hitachi [7][14]
March 1976 3,000 nm ? NMOS ? Intel [15]
April 1979 1,000 nm 25 nm NMOS William R. Hunter, L. M. Ephrath, Alice Cramer IBM T.J. Watson Research Center [16]
December 1984
100 nm
5 nm
NMOS Toshio Kobayashi, Seiji Horiguchi, K. Kiuchi Nippon Telegraph and Telephone [17]
December 1985
150 nm
2.5 nm
NMOS Toshio Kobayashi, Seiji Horiguchi, M. Miyake, M. Oda Nippon Telegraph and Telephone [18]
75 nm
? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis
MIT
[19]
January 1986
60 nm
? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis MIT [20]
June 1987 200 nm 3.5 nm PMOS Toshio Kobayashi, M. Miyake, K. Deguchi Nippon Telegraph and Telephone [21]
December 1993 40 nm ? NMOS Mizuki Ono, Masanobu Saito, Takashi Yoshitomi Toshiba [22]
September 1996 16 nm ? PMOS Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [23]
June 1998
50 nm
1.3 nm NMOS Khaled Z. Ahmed, Effiong E. Ibok, Miryeong Song
Advanced Micro Devices
(AMD)
[24][25]
December 2002 6 nm ? PMOS Bruce Doris, Omer Dokumaci, Meikei Ieong IBM [26][27][28]
December 2003 3 nm ? PMOS Hitoshi Wakabayashi, Shigeharu Yamagami NEC [29][27]
? NMOS

CMOS (single-gate)

Complementary MOSFET (CMOS) demonstrations (single-gate)
Date Channel length Oxide thickness[1] Researcher(s) Organization Ref
February 1963 ? ? Chih-Tang Sah, Frank Wanlass Fairchild Semiconductor [30][31]
1968 20,000 nm
100 nm
?
RCA Laboratories
[32]
1970
10,000 nm
100 nm ? RCA Laboratories [32]
December 1976 2,000 nm ? A. Aitken, R.G. Poulsen, A.T.P. MacArthur, J.J. White Mitel Semiconductor [33]
February 1978 3,000 nm ? Toshiaki Masuhara, Osamu Minato, Toshio Sasaki, Yoshio Sakai Hitachi Central Research Laboratory [34][35][36]
February 1983 1,200 nm
25 nm
R.J.C. Chwang, M. Choi, D. Creek, S. Stern, P.H. Pelley Intel [37][38]
900 nm 15 nm Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone (NTT) [37][39]
December 1983 1,000 nm 22.5 nm G.J. Hu, Yuan Taur, Robert H. Dennard, Chung-Yu Ting
IBM T.J. Watson Research Center
[40]
February 1987
800 nm
17 nm T. Sumi, Tsuneo Taniguchi, Mikio Kishimoto, Hiroshige Hirano Matsushita [37][41]
700 nm 12 nm Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone (NTT) [37][42]
September 1987 500 nm
12.5 nm
Hussein I. Hanafi, Robert H. Dennard, Yuan Taur, Nadim F. Haddad IBM T.J. Watson Research Center [43]
December 1987
250 nm
? Naoki Kasai, Nobuhiro Endo, Hiroshi Kitajima NEC [44]
February 1988 400 nm
10 nm
M. Inoue, H. Kotani, T. Yamada, Hiroyuki Yamauchi Matsushita [37][45]
December 1990
100 nm
?
Ghavam G. Shahidi, Bijan Davari
, Yuan Taur, James D. Warnock
IBM T.J. Watson Research Center [46]
1993
350 nm
? ? Sony [47]
1996
150 nm
? ? Mitsubishi Electric
1998
180 nm
? ? TSMC [48]
December 2003
5 nm
? Hitoshi Wakabayashi, Shigeharu Yamagami, Nobuyuki Ikezawa NEC [29][49]

Multi-gate MOSFET (MuGFET)

Multi-gate MOSFET (MuGFET
) demonstrations
Date Channel length MuGFET type Researcher(s) Organization Ref
August 1984 ?
DGMOS
Toshihiro Sekigawa, Yutaka Hayashi
Electrotechnical Laboratory
(ETL)
[50]
1987 2,000 nm DGMOS Toshihiro Sekigawa Electrotechnical Laboratory (ETL) [51]
December 1988
250 nm
DGMOS Bijan Davari, Wen-Hsing Chang, Matthew R. Wordeman, C.S. Oh
IBM T.J. Watson Research Center
[52][53]
180 nm
?
GAAFET
Fujio Masuoka, Hiroshi Takato, Kazumasa Sunouchi, N. Okabe Toshiba [54][55][56]
December 1989
200 nm
FinFET
Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto, Eiji Takeda Hitachi Central Research Laboratory [57][58][59]
December 1998 17 nm FinFET Digh Hisamoto, Chenming Hu, Tsu-Jae King Liu, Jeffrey Bokor
University of California (Berkeley)
[60][61]
2001 15 nm FinFET Chenming Hu, Yang-Kyu Choi, Nick Lindert, Tsu-Jae King Liu University of California (Berkeley) [60][62]
December 2002 10 nm FinFET Shibly Ahmed, Scott Bell, Cyrus Tabery, Jeffrey Bokor University of California (Berkeley) [60][63]
June 2006 3 nm GAAFET Hyunjin Lee, Yang-kyu Choi, Lee-Eun Yu, Seong-Wan Ryu KAIST [64][65]

Other types of MOSFET

MOSFET demonstrations (other types)
Date Channel
length
(nm)
Oxide
thickness
(nm)
[1]
MOSFET
type
Researcher(s) Organization Ref
October 1962 ? ? TFT Paul K. Weimer
RCA Laboratories
[66][67]
1965 ? ?
GaAs
H. Becke, R. Hall, J. White RCA Laboratories [68]
October 1966 100,000
100
TFT T.P. Brody, H.E. Kunig
Westinghouse Electric
[69][70]
August 1967 ? ?
FGMOS
Simon Min Sze
Bell Telephone Laboratories
[71]
October 1967 ? ? MNOS H.A. Richard Wegener, A.J. Lincoln, H.C. Pao Sperry Corporation [72]
July 1968 ? ?
BiMOS
Hung-Chang Lin, Ramachandra R. Iyer
Westinghouse Electric
[73][74]
October 1968 ? ? BiCMOS Hung-Chang Lin, Ramachandra R. Iyer, C.T. Ho Westinghouse Electric [75][74]
1969 ? ? VMOS ? Hitachi [76][77]
September 1969 ? ?
DMOS
Y. Tarui, Y. Hayashi, Toshihiro Sekigawa
Electrotechnical Laboratory
(ETL)
[78][79]
October 1970 ? ? ISFET Piet Bergveld University of Twente [80][81]
October 1970 1000 ? DMOS Y. Tarui, Y. Hayashi, Toshihiro Sekigawa Electrotechnical Laboratory (ETL) [82]
1977 ? ?
VDMOS
John Louis Moll
HP Labs [76]
? ? LDMOS ? Hitachi [83]
July 1979 ? ?
IGBT
Bantval Jayant Baliga
, Margaret Lazeri
General Electric [84]
December 1984 2000 ? BiCMOS H. Higuchi, Goro Kitsukawa, Takahide Ikeda, Y. Nishio Hitachi [85]
May 1985
300
? ? K. Deguchi, Kazuhiko Komatsu, M. Miyake, H. Namatsu Nippon Telegraph and Telephone [86]
February 1985 1000 ? BiCMOS H. Momose, Hideki Shibata, S. Saitoh, Jun-ichi Miyamoto Toshiba [87]
November 1986 90
8.3
? Han-Sheng Lee, L.C. Puzio General Motors [88]
December 1986
60
? ?
Ghavam G. Shahidi
, Dimitri A. Antoniadis, Henry I. Smith
MIT
[89][20]
May 1987 ? 10 ? Bijan Davari, Chung-Yu Ting, Kie Y. Ahn, S. Basavaiah
IBM T.J. Watson Research Center
[90]
December 1987
800
? BiCMOS Robert H. Havemann, R. E. Eklund, Hiep V. Tran Texas Instruments [91]
June 1997
30
? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [92]
1998
32
? ? ? NEC [27]
1999 8 ? ? ?
April 2000 8 ? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [93]

Commercial products using micro-scale MOSFETs

Products featuring 20 μm manufacturing process

Products featuring 10 μm manufacturing process

Products featuring 8 μm manufacturing process

Products featuring 6 μm manufacturing process

Products featuring 3 μm manufacturing process

Products featuring 1.5 μm manufacturing process

Products featuring 1 μm manufacturing process

Products featuring 800 nm manufacturing process

Products featuring 600 nm manufacturing process

  • Mitsubishi Electric, Toshiba and NEC introduced 16 Mb DRAM memory chips manufactured with a 600 nm process in 1989.[47]
  • NEC's 16 Mb EPROM memory chip in 1990.[47]
  • Mitsubishi's 16 Mb flash memory chip in 1991.[47]
  • CPU
    launched in 1994.
  • PowerPC 601
    , the first PowerPC chip, was produced in 0.6 μm.
  • Intel
    Pentium
    CPUs at 75 MHz, 90 MHz and 100 MHz.

Products featuring 350 nm manufacturing process

Products featuring 250 nm manufacturing process

Processors using 180 nm manufacturing technology

Processors using 130 nm manufacturing technology

  • Fujitsu SPARC64 V – 2001[101]
  • Gekko by IBM and Nintendo (GameCube
    console) – 2001
  • Motorola PowerPC 7447 and 7457 – 2002
  • IBM
    PowerPC G5 970
    – October 2002 – June 2003
  • Intel
    Coppermine
    – 2001-04
  • Intel
    Tualatin
    -256 – 2001-10-02
  • Intel
    Banias
    – 2003-03-12
  • Intel Pentium 4 Northwood- 2002-01-07
  • Intel Celeron Northwood-128 – 2002-09-18
  • Intel Xeon Prestonia and Gallatin – 2002-02-25
  • VIA C3 – 2001
  • AMD
    Athlon XP
    Thoroughbred, Thorton, and Barton
  • AMD Athlon MP Thoroughbred – 2002-08-27
  • AMD Athlon XP-M Thoroughbred, Barton, and Dublin
  • AMD Duron Applebred – 2003-08-21
  • AMD K7 Sempron Thoroughbred-B, Thorton, and Barton – 2004-07-28
  • AMD K8 Sempron Paris – 2004-07-28
  • AMD Athlon 64 Clawhammer and Newcastle – 2003-09-23
  • AMD Opteron Sledgehammer – 2003-06-30
  • Elbrus 2000 1891ВМ4Я (1891VM4YA) – 2008-04-27 [1]
  • MCST-R500S 1891BM3 – 2008-07-27 [2]
  • Vortex 86SX – [3]

Commercial products using nano-scale MOSFETs

Chips using 90 nm manufacturing technology

  • Sony–Toshiba Emotion Engine+Graphics Synthesizer (PlayStation 2) – 2003[100]
  • IBM
    PowerPC G5 970FX
    – 2004
  • 90 nm DDR2 SDRAM process
    – 2005
  • IBM
    PowerPC G5 970MP
    – 2005
  • IBM
    PowerPC G5 970GX
    – 2005
  • IBM Waternoose Xbox 360 Processor – 2005
  • IBM–Sony–Toshiba
    Cell processor
    – 2005
  • Intel Pentium 4 Prescott – 2004-02
  • Intel Celeron D Prescott-256 – 2004-05
  • Intel
    Dothan
    – 2004-05
  • Intel
    Dothan
    -1024 – 2004-08
  • Intel Xeon Nocona, Irwindale, Cranford, Potomac, Paxville – 2004-06
  • Intel Pentium D Smithfield – 2005-05
  • AMD Athlon 64 Winchester, Venice, San Diego, Orleans – 2004-10
  • AMD Athlon 64 X2 Manchester, Toledo, Windsor – 2005-05
  • AMD Sempron Palermo and Manila – 2004-08
  • AMD
    Turion 64
    Lancaster and Richmond – 2005-03
  • AMD
    Turion 64 X2
    Taylor and Trinidad – 2006-05
  • AMD Opteron Venus, Troy, and Athens – 2005-08
  • AMD Dual-core Opteron Denmark, Italy, Egypt, Santa Ana, and Santa Rosa
  • VIA C7 – 2005-05
  • Loongson (Godson) STLS2E02 – 2007-04
  • Loongson (Godson) 2F STLS2F02 – 2008-07
  • MCST-4R
    – 2010-12
  • Elbrus-2C+
    – 2011-11

Processors using 65 nm manufacturing technology

Processors using 45 nm technology

Chips using 32 nm technology

Chips using 24–28 nm technology

  • SK Hynix announced that it could produce a 26 nm flash chip with 64 Gb capacity; Intel Corp. and Micron Technology had by then already developed the technology themselves. Announced in 2010.[110]
  • Toshiba announced that it was shipping 24 nm flash memory NAND devices on August 31, 2010.[111]
  • In 2016 MCST's 28 nm processor Elbrus-8S went for serial production.[112][113]

Chips using 22 nm technology

  • Intel Core i7 and Intel Core i5 processors based on Intel's Ivy Bridge 22 nm technology for series 7 chip-sets went on sale worldwide on April 23, 2012.[114]

Chips using 20 nm technology

Chips using 16 nm technology

Chips using 14 nm technology

  • Intel Core i7 and Intel Core i5 processors based on Intel's Broadwell 14 nm technology was launched in January 2015.[117]
  • FinFET technology.[118]

Chips using 10 nm technology

Chips using 7 nm technology

  • TSMC began risk production of 256 Mbit SRAM memory chips using a 7 nm process in April 2017.[124]
  • Samsung and TSMC began mass production of 7 nm devices in 2018.[125]
  • Apple A12 and Huawei Kirin 980 mobile processors, both released in 2018, use 7 nm chips manufactured by TSMC.[126]
  • AMD began using TSMC 7 nm starting with the Vega 20 GPU in November 2018,[127] with Zen 2-based CPUs and APUs from July 2019,[128] and for both PlayStation 5 [129] and Xbox Series X/S [130] consoles' APUs, released both in November 2020.

Chips using 5 nm technology

  • Samsung began production of 5 nm chips (5LPE) in late 2018.[131]
  • TSMC began production of 5 nm chips (CLN5FF) in April 2019.[132]

Chips using 3 nm technology

See also

References

  1. ^ a b c "Angstrom". Collins English Dictionary. Retrieved 2019-03-02.
  2. .
  3. ^ Atalla, Mohamed M.; Kahng, Dawon (June 1960). "Silicon–silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference. Carnegie Mellon University Press.
  4. .
  5. .
  6. .
  7. ^ .
  8. .
  9. ^ "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  10. ^ "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  11. ^ a b "1973: 12-bit engine-control microprocessor (Toshiba)" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  12. .
  13. .
  14. .
  15. ^ "Intel Microprocessor Quick Reference Guide". Intel. Retrieved 27 June 2019.
  16. S2CID 26389509
    .
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. ^ .
  28. ^ "IBM claims world's smallest silicon transistor – TheINQUIRER". Theinquirer.net. 2002-12-09. Archived from the original on May 31, 2011. Retrieved 7 December 2017.{{cite web}}: CS1 maint: unfit URL (link)
  29. ^
    S2CID 2100267
    .
  30. ^ "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved 6 July 2019.
  31. .
  32. ^ .
  33. .
  34. ^ "1978: Double-well fast CMOS SRAM (Hitachi)" (PDF). Semiconductor History Museum of Japan. Retrieved 5 July 2019.
  35. S2CID 30753823
    .
  36. ^ Masuhara, Toshiaki; Minato, Osamu; Sakai, Yoshi; Sasaki, Toshio; Kubo, Masaharu; Yasui, Tokumasa (September 1978). "Short Channel Hi-CMOS Device and Circuits". ESSCIRC 78: 4th European Solid State Circuits Conference – Digest of Technical Papers: 131–132.
  37. ^ a b c d e f g h Gealow, Jeffrey Carl (10 August 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved 25 June 2019 – via CORE.
  38. S2CID 29882862
    .
  39. .
  40. .
  41. .
  42. .
  43. ^ Hanafi, Hussein I.; Dennard, Robert H.; Taur, Yuan; Haddad, Nadim F.; Sun, J. Y. C.; Rodriguez, M. D. (September 1987). "0.5 μm CMOS Device Design and Characterization". ESSDERC '87: 17th European Solid State Device Research Conference: 91–94.
  44. S2CID 9203005
    .
  45. .
  46. .
  47. ^ a b c d e f g h i j k l m n "Memory". STOL (Semiconductor Technology Online). Retrieved 25 June 2019.
  48. ^ "0.18-micron Technology". TSMC. Retrieved 30 June 2019.
  49. ^ "NEC test-produces world's smallest transistor". Thefreelibrary.com. Retrieved 7 December 2017.
  50. ISSN 0038-1101
    .
  51. S2CID 189033174. Archived from the original
    (PDF) on 26 September 2019.
  52. .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .
  59. ^ "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Retrieved 4 July 2019.
  60. ^ a b c Tsu-Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Archived from the original on 28 May 2016. Retrieved 9 July 2019.
  61. S2CID 37774589
    .
  62. .
  63. S2CID 7106946. Archived from the original
    (PDF) on 2020-05-27. Retrieved 2019-10-11.
  64. .
  65. ^ "Still Room at the Bottom (nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012
  66. S2CID 51650159
    .
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. .
  74. ^ .
  75. .
  76. ^ a b "Advances in Discrete Semiconductors March On". Power Electronics Technology. Informa: 52–6. September 2005. Archived (PDF) from the original on 22 March 2006. Retrieved 31 July 2019.
  77. .
  78. S2CID 184290914. {{cite book}}: |journal= ignored (help
    )
  79. .
  80. .
  81. . Retrieved 13 May 2016.
  82. .
  83. .
  84. .
  85. .
  86. ^ Deguchi, K.; Komatsu, Kazuhiko; Miyake, M.; Namatsu, H.; Sekimoto, M.; Hirata, K. (1985). "Step-and-Repeat X-ray/Photo Hybrid Lithography for 0.3 μm Mos Devices". 1985 Symposium on VLSI Technology. Digest of Technical Papers: 74–75.
  87. S2CID 37353920
    .
  88. .
  89. .
  90. ^ Davari, Bijan; Ting, Chung-Yu; Ahn, Kie Y.; Basavaiah, S.; Hu, Chao-Kun; Taur, Yuan; Wordeman, Matthew R.; Aboelfotoh, O. (May 1987). "Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide". 1987 Symposium on VLSI Technology. Digest of Technical Papers: 61–62.
  91. S2CID 40375699
    .
  92. .
  93. .
  94. . The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 μm, 2 memory cell size, a die size just under 10 mm2, and sold for around $21.
  95. ^ a b "History of the Intel Microprocessor - Listoid". Archived from the original on 2015-04-27. Retrieved 2019-07-02.
  96. ^ a b c "Design case history: the Commodore 64" (PDF). IEEE Spectrum. Retrieved 1 September 2019.
  97. ^ Mueller, S (2006-07-21). "Microprocessors from 1971 to the Present". informIT. Retrieved 2012-05-11.
  98. ^ "Amiga Manual: Amiga 3000+ System Specification 1991". 17 July 1991.
  99. ^ "Propeller I semiconductor process technology? Is it 350nm or 180nm?". Archived from the original on 2012-07-10. Retrieved 2012-09-10.
  100. ^ a b "Emotion Engine and Graphics Synthesizer Used in the Core of PlayStation Become One Chip" (PDF) (Press release). Sony. 21 April 2003. Retrieved 26 June 2019.
  101. ^ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
  102. ^ "ソニー、65nm対応の半導体設備を導入。3年間で2,000億円の投資". pc.watch.impress.co.jp. Archived from the original on 2016-08-13.
  103. ^ TG Daily – AMD preps 65 nm Turion X2 processors Archived 2007-09-13 at the Wayback Machine
  104. ^ http://focus.ti.com/pdfs/wtbu/ti_omap3family.pdf[bare URL PDF]
  105. ^ "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved 2 July 2019.
  106. ^ "Toshiba Makes Major Advances in NAND Flash Memory with 3-bit-per-cell 32nm generation and with 4-bit-per-cell 43nm technology". Toshiba. 11 February 2009. Retrieved 21 June 2019.
  107. ^ "Intel Debuts 32-NM Westmere Desktop Processors". InformationWeek, 7 January 2010. Retrieved 2011-12-17.
  108. ^ Cangeloso, Sal (February 4, 2010). "Intel's 6-core 32nm processors arriving soon". Geek.com. Archived from the original on March 30, 2012. Retrieved November 11, 2011.
  109. ^ "Ambarella A7L Enables the Next Generation of Digital Still Cameras with 1080p60 Fluid Motion Video". News release. September 26, 2011. Archived from the original on November 10, 2011. Retrieved November 11, 2011.
  110. ^ Article reporting Hynix 26 nm technology announcement
  111. ^ Toshiba launches 24nm process NAND flash memory
  112. ^ "The Russian 28-nm processor "Elbrus-8C" will go into production in 2016". Retrieved 7 September 2020.
  113. ^ "Another domestic data storage system on "Elbrus" has been created". 25 August 2020. Retrieved 7 September 2020.
  114. ^ Intel launches Ivy Bridge...
  115. ^ "History". Samsung Electronics. Samsung. Retrieved 19 June 2019.
  116. ^ "16/12nm Technology". TSMC. Retrieved 30 June 2019.
  117. ^ EETimes Intel Rolls 14nm Broadwell in Vegas
  118. ^ "AMD Zen Architecture Overview". Tech4Gizmos. 2015-12-04. Retrieved 2019-05-01.
  119. ^ "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. 11 April 2013. Retrieved 21 June 2019.
  120. ^ Samsung Starts Industry's First Mass Production of System-on-Chip with 10-Nanometer FinFET Technology, Oct 2016
  121. ^ "10nm Technology". TSMC. Retrieved 30 June 2019.
  122. ^ "Latest Samsung Galaxy Smartphones | Mobile Phones".
  123. ^ techinsights.com. "10nm Rollout Marching Right Along". www.techinsights.com. Archived from the original on 2017-08-03. Retrieved 2017-06-30.
  124. ^ "7nm Technology". TSMC. Retrieved 30 June 2019.
  125. ^ TSMC ramping up 7nm chip production Monica Chen, Hsinchu; Jessie Shen, DIGITIMES Friday 22 June 2018
  126. ^ "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. Retrieved 2018-09-20.
  127. ^ Smith, Ryan. "AMD Announces Radeon Instinct MI60 & MI50 Accelerators: Powered By 7nm Vega". www.anandtech.com. Retrieved 2021-01-09.
  128. ^ Cutress, Ian. "AMD Ryzen 3000 Announced: Five CPUs, 12 Cores for $499, Up to 4.6 GHz, PCIe 4.0, Coming 7/7". www.anandtech.com. Retrieved 2021-01-09.
  129. ^ Smith, Ryan. "Sony Teases Next-Gen PlayStation: Custom AMD Chip with Zen 2 CPU & Navi GPU, SSD Too". www.anandtech.com. Retrieved 2021-01-09.
  130. ^ Howse, Brett. "Xbox at E3 2019: Xbox Project Scarlett Console Launching Holiday 2020". www.anandtech.com. Retrieved 2021-01-09.
  131. ^ Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". www.anandtech.com. Retrieved 2019-05-31.
  132. ^ TSMC and OIP Ecosystem Partners Deliver Industry's First Complete Design Infrastructure for 5nm Process Technology (press release), TSMC, 3 April 2019
  133. ^ "TSMC Plans New Fab for 3nm". EE Times. 12 December 2016. Retrieved 26 September 2019.
  134. ^ Armasu, Lucian (11 January 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021", Tom's Hardware
  135. ^ Smith, Ryan. "Samsung Starts 3nm Production: The Gate-All-Around (GAAFET) Era Begins". www.anandtech.com. Retrieved 2022-11-08.