Lizard

Page semi-protected
Source: Wikipedia, the free encyclopedia.

Lizards
Temporal range:
Ma
Clockwise from top left: veiled chameleon (Chamaeleo calyptratus), rock monitor (Varanus albigularis), common blue-tongued skink (Tiliqua scincoides), Italian wall lizard (Podarcis sicula), giant leaf-tailed gecko (Uroplatus fimbriatus), and legless lizard (Anelytropsis papillosus)
Clockwise from top left:
Anelytropsis papillosus
)
Scientific classificationEdit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Superorder: Lepidosauria
Order: Squamata
Groups included
Anguimorpha
Dibamidae
Gekkota
Iguanomorpha
Lacertoidea
Scincomorpha
Range of the lizards, all species.
Range of the lizards, all species.
Cladistically included but traditionally excluded taxa
Serpentes
Amphisbaenia (sometimes)
Mosasauroidea
Synonyms

Sauria Macartney, 1802

Lizard is the common name used for all squamate reptiles other than snakes (and to a lesser extent amphisbaenians), encompassing over 7,000 species,[1] ranging across all continents except Antarctica, as well as most oceanic island chains. The grouping is paraphyletic as some lizards are more closely related to snakes than they are to other lizards. Lizards range in size from chameleons and geckos a few centimeters long to the 3-meter-long Komodo dragon.

Most lizards are quadrupedal, running with a strong side-to-side motion. Some lineages (known as "

sit-and-wait predators; many smaller species eat insects, while the Komodo eats mammals as big as water buffalo
.

Lizards make use of a variety of

.

Anatomy

Largest and smallest

The adult length of species within the

Most lizards are fairly small animals.

Distinguishing features

A young Mediterranean house gecko in the process of moulting.

Lizards typically have rounded torsos, elevated heads on short necks, four limbs and long tails, although some are legless.

prehensile tails, assisting them in climbing among vegetation.[6]

As in other reptiles, the skin of lizards is covered in overlapping

scales made of keratin. This provides protection from the environment and reduces water loss through evaporation. This adaptation enables lizards to thrive in some of the driest deserts on earth. The skin is tough and leathery, and is shed (sloughed) as the animal grows. Unlike snakes which shed the skin in a single piece, lizards slough their skin in several pieces. The scales may be modified into spines for display or protection, and some species have bone osteoderms underneath the scales.[6][7]

Tupinambis rufescens
) skull, showing teeth of differing types

The dentitions of lizards reflect their wide range of diets, including carnivorous, insectivorous, omnivorous, herbivorous, nectivorous, and molluscivorous. Species typically have uniform teeth suited to their diet, but several species have variable teeth, such as cutting teeth in the front of the jaws and crushing teeth in the rear. Most species are pleurodont, though agamids and chameleons are acrodont.[8][6]

The tongue can be extended outside the mouth, and is often long. In the beaded lizards, whiptails and monitor lizards, the tongue is forked and used mainly or exclusively to sense the environment, continually flicking out to sample the environment, and back to transfer molecules to the vomeronasal organ responsible for chemosensation, analogous to but different from smell or taste. In geckos, the tongue is used to lick the eyes clean: they have no eyelids. Chameleons have very long sticky tongues which can be extended rapidly to catch their insect prey.[6]

Three lineages, the

zygodactyly), enabling them to perch on branches as birds do.[a][6]

Physiology

Locomotion

Adhesive pads enable geckos to climb vertically.

Aside from

Draco can glide: some can attain a distance of 60 metres (200 feet), losing 10 metres (33 feet) in height.[11] Some species, like geckos and chameleons, adhere to vertical surfaces including glass and ceilings.[9] Some species, like the common basilisk, can run across water.[12]

Senses

Lizards make use of their

olfaction and hearing like other vertebrates. The balance of these varies with the habitat of different species; for instance, skinks that live largely covered by loose soil rely heavily on olfaction and touch, while geckos depend largely on acute vision for their ability to hunt and to evaluate the distance to their prey before striking. Monitor lizards have acute vision, hearing, and olfactory senses. Some lizards make unusual use of their sense organs: chameleons can steer their eyes in different directions, sometimes providing non-overlapping fields of view, such as forwards and backwards at once. Lizards lack external ears, having instead a circular opening in which the tympanic membrane (eardrum) can be seen. Many species rely on hearing for early warning of predators, and flee at the slightest sound.[13]

Nile monitor using its tongue for smell

As in snakes and many mammals, all lizards have a specialised olfactory system, the vomeronasal organ, used to detect pheromones. Monitor lizards transfer scent from the tip of their tongue to the organ; the tongue is used only for this information-gathering purpose, and is not involved in manipulating food.[14][13]

Skeleton of bearded dragon (pogona sp.) on display at the Museum of Osteology.

Some lizards, particularly iguanas, have retained a photosensory organ on the top of their heads called the parietal eye, a basal ("primitive") feature also present in the tuatara. This "eye" has only a rudimentary retina and lens and cannot form images, but is sensitive to changes in light and dark and can detect movement. This helps them detect predators stalking it from above.[15]

Venom

Some lizards including the Gila monster are venomous.

Until 2006 it was thought that the

medicinal drugs based on lizard venom proteins.[16][17]

Genes associated with venom toxins have been found in the salivary glands of a wide range of lizards, including species traditionally thought of as non-venomous, such as iguanas and bearded dragons. This suggests that these genes evolved in the common ancestor of lizards and snakes, some 200 million years ago (forming a single clade, the Toxicofera).[16] However, most of these putative venom genes were "housekeeping genes" found in all cells and tissues, including skin and cloacal scent glands. The genes in question may thus be evolutionary precursors of venom genes.[18]

Respiration

Recent studies (2013 and 2014) on the lung anatomy of the

crocodilians and birds). This may be evidence that unidirectional airflow is an ancestral trait in diapsids.[19][20]

Reproduction and life cycle

skinks
mating

As with all amniotes, lizards rely on internal fertilisation and copulation involves the male inserting one of his hemipenes into the female's cloaca.[21] Female lizards also have hemiclitorises, a doubled clitoris. The majority of species are

oviparous (egg laying). The female deposits the eggs in a protective structure like a nest or crevice or simply on the ground.[22] Depending on the species, clutch size can vary from 4–5 percent of the females body weight to 40–50 percent and clutches range from one or a few large eggs to dozens of small ones.[23]

Two pictures of an eastern fence lizard egg layered onto one image.

In most lizards, the eggs have leathery shells to allow for the exchange of water, although more arid-living species have calcified shells to retain water. Inside the eggs, the embryos use nutrients from the yolk. Parental care is uncommon and the female usually abandons the eggs after laying them. Brooding and protection of eggs do occur in some species. The female prairie skink uses respiratory water loss to maintain the humidity of the eggs which facilitates embryonic development. In lace monitors, the young hatch close to 300 days, and the female returns to help them escape the termite mound where the eggs were laid.[22]

Around 20 percent of lizard species reproduce via

whiptail lizards.[25] Parthenogenesis was also recorded in species that normally reproduce sexually. A captive female Komodo dragon produced a clutch of eggs, despite being separated from males for over two years.[26]

Sex determination in lizards can be

sex chromosomes and both male heterogamety (XY and XXY) and female heterogamety (ZW) occur.[25]

Aging

A significant component of aging in the painted dragon lizard Ctenophorus pictus is fading breeding colors.[27] By manipulating superoxide levels (using a superoxide dismutase mimetic) it was shown that this fading coloration is likely due to gradual loss with lizard age of an innate capacity for antioxidation due to increasing DNA damage.[27]

Behaviour

Diurnality and thermoregulation

The majority of lizard species are active during the day,[28] though some are active at night, notably geckos. As ectotherms, lizards have a limited ability to regulate their body temperature, and must seek out and bask in sunlight to gain enough heat to become fully active.[29] Thermoregulation behavior can be beneficial in the short term for lizards as it allows the ability to buffer environmental variation and endure climate warming.[30]

In high altitudes, the Podarcis hispaniscus responds to higher temperature with a darker dorsal coloration to prevent UV-radiation and background matching. Their thermoregulatory mechanisms also allow the lizard to maintain their ideal body temperature for optimal mobility.[31]

Territoriality

sand lizards

Most social interactions among lizards are between breeding individuals.[28] Territoriality is common and is correlated with species that use sit-and-wait hunting strategies. Males establish and maintain territories that contain resources that attract females and which they defend from other males. Important resources include basking, feeding, and nesting sites as well as refuges from predators. The habitat of a species affects the structure of territories, for example, rock lizards have territories atop rocky outcrops.[32] Some species may aggregate in groups, enhancing vigilance and lessening the risk of predation for individuals, particularly for juveniles.[33] Agonistic behaviour typically occurs between sexually mature males over territory or mates and may involve displays, posturing, chasing, grappling and biting.[32]

Communication

A green anole (Anolis carolinensis) signalling with its extended dewlap

Lizards signal both to attract mates and to intimidate rivals. Visual displays include body postures and inflation, push-ups, bright colours, mouth gapings and tail waggings. Male

threat display.[35] Chameleons are known to change their complex colour patterns when communicating, particularly during agonistic encounters. They tend to show brighter colours when displaying aggression[36] and darker colours when they submit or "give up".[37]

Several gecko species are brightly coloured; some species tilt their bodies to display their coloration. In certain species, brightly coloured males turn dull when not in the presence of rivals or females. While it is usually males that display, in some species females also use such communication. In the bronze anole, head-bobs are a common form of communication among females, the speed and frequency varying with age and territorial status. Chemical cues or pheromones are also important in communication. Males typically direct signals at rivals, while females direct them at potential mates. Lizards may be able to recognise individuals of the same species by their scent.[34]

Acoustic communication is less common in lizards. Hissing, a typical reptilian sound, is mostly produced by larger species as part of a threat display, accompanying gaping jaws. Some groups, particularly geckos, snake-lizards, and some iguanids, can produce more complex sounds and vocal apparatuses have independently evolved in different groups. These sounds are used for courtship, territorial defense and in distress, and include clicks, squeaks, barks and growls. The mating call of the male tokay gecko is heard as "tokay-tokay!".[35][34][38] Tactile communication involves individuals rubbing against each other, either in courtship or in aggression.[34] Some chameleon species communicate with one another by vibrating the substrate that they are standing on, such as a tree branch or leaf.[39]

Ecology

Lizard in tree. Many species are tree-dwelling
A lizard from Thar desert
A lizard from Thar desert

Distribution and habitat

Lizards are found worldwide, excluding the far north and Antarctica, and some islands. They can be found in elevations from sea level to 5,000 m (16,000 ft). They prefer warmer, tropical climates but are adaptable and can live in all but the most extreme environments. Lizards also exploit a number of habitats; most primarily live on the ground, but others may live in rocks, on trees, underground and even in water. The marine iguana is adapted for life in the sea.[6]

Diet

Western green lizard ambushes its grasshopper prey.

The majority of lizard species are

termites as well as spiders. They rely on persistence and ambush to capture these prey. An individual perches on a branch and stays perfectly still, with only its eyes moving. When an insect lands, the chameleon focuses its eyes on the target and slowly moves toward it before projecting its long sticky tongue which, when hauled back, brings the attached prey with it. Geckos feed on crickets, beetles, termites and moths.[6][40]

Termites are an important part of the diets of some species of Autarchoglossa, since, as

herbivorous ones.[42] Species of skink and alligator lizards eat snails and their power jaws and molar-like teeth are adapted for breaking the shells.[6][40]

Young Komodo dragon feeding on a water buffalo carcass
Marine iguana foraging under water at Galápagos Islands, Ecuador.

Larger species, such as monitor lizards, can feed on larger prey including fish, frogs, birds, mammals and other reptiles. Prey may be swallowed whole and torn into smaller pieces. Both bird and reptile eggs may also be consumed as well. Gila monsters and beaded lizards climb trees to reach both the eggs and young of birds. Despite being venomous, these species rely on their strong jaws to kill prey. Mammalian prey typically consists of rodents and leporids; the Komodo dragon can kill prey as large as water buffalo. Dragons are prolific scavengers, and a single decaying carcass can attract several from 2 km (1.2 mi) away. A 50 kg (110 lb) dragon is capable of consuming a 31 kg (68 lb) carcass in 17 minutes.[40]

Around 2 percent of lizard species, including many iguanids, are herbivores. Adults of these species eat plant parts like flowers, leaves, stems and fruit, while juveniles eat more insects. Plant parts can be hard to digest, and, as they get closer to adulthood, juvenile iguanas eat faeces from adults to acquire the

algae, kelp and other marine plants. Some non-herbivorous species supplement their insect diet with fruit, which is easily digested.[6][40]

Antipredator adaptations

frilled-neck lizard
with fully extended frill. The frilled neck serves to make it look bigger than it actually is.

Lizards have a variety of

reflex bleeding
.

Camouflage

Lizards exploit a variety of different

change colour for camouflage: when a light-coloured gecko is placed on a dark surface, it darkens within an hour to match the environment.[44] The chameleons in general use their ability to change their coloration for signalling rather than camouflage, but some species such as Smith's dwarf chameleon do use active colour change for camouflage purposes.[45]

The flat-tail horned lizard's body is coloured like its desert background, and is flattened and fringed with white scales to minimise its shadow.[46]

Autotomy

A skink tail continuing to move after autotomy

Many lizards, including geckos and skinks, are capable of shedding their tails (autotomy). The detached tail, sometimes brilliantly coloured, continues to writhe after detaching, distracting the predator's attention from the fleeing prey. Lizards partially regenerate their tails over a period of weeks. Some 326 genes are involved in regenerating lizard tails.[47] The fish-scale gecko Geckolepis megalepis sheds patches of skin and scales if grabbed.[48]

Escape, playing dead, reflex bleeding

Many lizards attempt to escape from danger by running to a place of safety;

play dead to deceive a predator that has caught them; attempt to outrun the rattlesnake, which does not pursue prey; but stay still, relying on their cryptic coloration, for Masticophis whip snakes which can catch even swift prey. If caught, some species such as the greater short-horned lizard puff themselves up, making their bodies hard for a narrow-mouthed predator like a whip snake to swallow. Finally, horned lizards can squirt blood at cat and dog predators from a pouch beneath its eyes, to a distance of about two metres (6.6 feet); the blood tastes foul to these attackers.[51]

Evolution

Fossil history

Fossil lizard Dalinghosaurus longidigitus, Early Cretaceous, China

The closest living relatives of lizards are

stem-group squamates, more closely related to modern lizards than rhynchocephalians, however, their position is disputed, with some studies recovering them as less closely related to squamates than rhynchocephalians are.[52] The oldest undisputed lizards date to the Middle Jurassic, from remains found In Europe, Asia and North Africa.[53] Lizard morphological and ecological diversity substantially increased over the course of the Cretaceous.[54]

Mosasaurs likely evolved from an extinct group of aquatic lizards[55] known as aigialosaurs in the Early Cretaceous. Dolichosauridae is a family of Late Cretaceous aquatic varanoid lizards closely related to the mosasaurs.[56][57]

Phylogeny

External

The position of the lizards and other Squamata among the reptiles was studied using fossil evidence by Rainer Schoch and Hans-Dieter Sues in 2015. Lizards form about 60% of the extant non-avian reptiles.[58]

Archelosauria

Internal

Both the snakes and the

paraphyletic.[59]
The cladogram is based on genomic analysis by Wiens and colleagues in 2012 and 2016.[60][61] Excluded taxa are shown in upper case on the cladogram.

Taxonomy

Artistic restoration of a mosasaur, Prognathodon

In the 13th century, lizards were recognized in Europe as part of a broad category of reptiles that consisted of a miscellany of egg-laying creatures, including "snakes, various fantastic monsters, […], assorted amphibians, and worms", as recorded by

paraphyletic group. It was defined as a clade by Jacques Gauthier, Arnold G. Kluge and Timothy Rowe (1988) as the group containing the most recent common ancestor of archosaurs and lepidosaurs (the groups containing crocodiles and lizards, as per Mcartney's original definition) and all its descendants.[65] A different definition was formulated by Michael deBraga and Olivier Rieppel (1997), who defined Sauria as the clade containing the most recent common ancestor of Choristodera, Archosauromorpha, Lepidosauromorpha and all their descendants.[66]
However, these uses have not gained wide acceptance among specialists.

Suborder Lacertilia (Sauria) – (lizards)

The slowworms, Anguis, are among over twenty groups of lizards that have convergently evolved a legless body plan.[67]

Convergence

Lizards have frequently

Scincidae; snakes are just the most famous and species-rich group of Squamata to have followed this path.[67]

Relationship with humans

Interactions and uses by humans

Most lizard species are harmless to humans. Only the largest lizard species, the Komodo dragon, which reaches 3.3 m (11 ft) in length and weighs up to 166 kg (366 lb), has been known to stalk, attack, and, on occasion, kill humans. An eight-year-old Indonesian boy died from blood loss after an attack in 2007.[69]

Green iguanas (Iguana iguana), are popular pets.

Numerous species of lizard are kept as

anoles,[71] and geckos (such as the popular leopard gecko).[70]Monitor lizards such as the savannah monitor and tegus such as the Argentine tegu and red tegu
are also kept.

In culture

Lizards appear in myths and folktales around the world. In

Australian Aboriginal mythology, Tarrotarro, the lizard god, split the human race into male and female, and gave people the ability to express themselves in art. A lizard king named Mo'o features in Hawaii and other cultures in Polynesia. In the Amazon, the lizard is the king of beasts, while among the Bantu of Africa, the god UNkulunkulu sent a chameleon to tell humans they would live forever, but the chameleon was held up, and another lizard brought a different message, that the time of humanity was limited.[75] A popular legend in Maharashtra tells the tale of how a common Indian monitor, with ropes attached, was used to scale the walls of the fort in the Battle of Sinhagad.[76] In the Bhojpuri speaking region of India and Nepal, there is a belief among children that, on touching skink's
tail three (or five) time with the shortest finger gives money.

Lizards in many cultures share the symbolism of snakes, especially as an emblem of resurrection. This may have derived from their regular molting. The motif of lizards on Christian candle holders probably alludes to the same symbolism. According to Jack Tresidder, in Egypt and the Classical world, they were beneficial emblems, linked with wisdom. In African, Aboriginal and Melanesian folklore they are linked to cultural heroes or ancestral figures.[77]

Notes

  1. ^ Chameleon forefeet have groups composed of 3 inner and 2 outer digits; the hindfeet have groups of 2 inner and 3 outer digits.[6]
  2. ^ The BBC's 2016 Planet Earth II showed a sequence of newly-hatched marine iguanas running to the sea past a waiting crowd of racer snakes. It was edited for dramatic effect but the sections were all genuine.[50]

References

  1. ^ "The Reptile Database". Reptile-database.reptarium.cz. Retrieved on 2022-06-13
  2. ^ Muir, Hazel (3 December 2001). "Minute gecko matches smallest reptile record". New Scientist.
  3. ^ "The world's top 10 reptiles – in pictures". The Guardian. 5 May 2016.
  4. .
  5. ^ Jones; et al. (2011). "Hard tissue anatomy of the cranial joints in Sphenodon (Rhynchocephalia): sutures, kinesis, and skull mechanics". Palaeontologia Electronica. 14(2, 17A): 1–92.
  6. ^ .
  7. .
  8. ^ Pough; et al. (2002) [1992]. Herpetology (Third ed.). Pearson Prentice Hall.
  9. ^
    PMID 24970387
    .
  10. – via jeb.biologists.org.
  11. Greenwood Press
    .
  12. ^ Pianka and Vitt, 23–24
  13. ^ .
  14. .
  15. ^ Brames, Henry (2007), "Aspects of Light and Reptile Immunity" (PDF), Iguana: Conservation, Natural History, and Husbandry of Reptiles, 14 (1): 19–23[permanent dead link]
  16. ^
    S2CID 4386245
    .
  17. ^ a b Casey, Constance (26 April 2013). "Don't Call It a Monster". Slate.
  18. PMID 25449103
    .
  19. .
  20. .
  21. ^ Pianka and Vitt, pp. 108.
  22. ^ a b Pianka and Vitt, pp. 115–116.
  23. ^ Pianka and Vitt, pp. 110–111.
  24. ^ Pianka and Vitt, pp. 117–118.
  25. ^ a b Pianka and Vitt, pp. 119.
  26. ^ Morales, Alex (20 December 2006). "Komodo Dragons, World's Largest Lizards, Have Virgin Births". Bloomberg Television. Retrieved 28 March 2008.
  27. ^ a b Olsson M, Tobler M, Healey M, Perrin C, Wilson M. A significant component of ageing (DNA damage) is reflected in fading breeding colors: an experimental test using innate antioxidant mimetics in painted dragon lizards. Evolution. 2012 Aug;66(8):2475-83. doi: 10.1111/j.1558-5646.2012.01617.x. Epub 2012 Apr 9. PMID 22834746
  28. ^ a b c Pianka and Vitt, pp. 86.
  29. ^ Pianka and Vitt, pp. 32–37.
  30. JSTOR 48577009
    .
  31. .
  32. ^ a b Pianka and Vitt, pp. 94–106.
  33. .
  34. ^ a b c d Pianka and Vitt, pp. 87–94.
  35. ^ a b Langley, L. (24 October 2015). "Are Lizards as Silent as They Seem?". news.nationalgeographic.com. Archived from the original on October 25, 2015. Retrieved 9 July 2017.
  36. PMID 24335271
    .
  37. .
  38. ^ Frankenberg, E.; Werner, Y. L. (1992). "Vocal communication in the Reptilia–facts and questions". 41. Acta Zoologica: 45–62. {{cite journal}}: Cite journal requires |journal= (help)
  39. JSTOR 1447408. Archived from the original
    (PDF) on 2021-02-16. Retrieved 2017-07-11.
  40. ^ a b c d e f Pianka and Vitt, pp. 41–51.
  41. ^ Pianka and Vitt, pp. 53–55.
  42. ^ Pianka and Vitt, pp. 162.
  43. PMID 26804463
    .
  44. ^ Yong, Ed (16 July 2014). "Lizard 'Sees' With Its Skin For Automatic Camouflage". National Geographic. Archived from the original on July 19, 2014.
  45. PMID 18492645
    .
  46. .
  47. ^ Scientists discover how lizards regrow tails, The Independent, August 20, 2014
  48. PMID 28194313
    .
  49. .
  50. ^ "From Planet Earth II, a baby iguana is chased by snakes". BBC. 15 November 2016.
  51. ^ Hewitt, Sarah (5 November 2015). "If it has to, a horned lizard can shoot blood from its eyes". BBC.
  52. S2CID 253160713
    .
  53. , retrieved 2024-01-10
  54. .
  55. ^ Dash, Sean (2008). Prehistoric Monsters Revealed. United States: Workaholic Productions / History Channel. Archived from the original on 2016-01-27. Retrieved December 18, 2015.
  56. PMID 30110414
    .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. ^ James Macartney: Table III in: George Cuvier (1802) "Lectures on Comparative Anatomy" (translated by William Ross under the inspection of James Macartney). Vol I. London, Oriental Press, Wilson and Co.
  64. ^ Alexandre Brongniart (1800) "Essai d'une classification naturelle des reptiles. 1ère partie: Etablissement des ordres." Bulletin de la Science. Société Philomathique de Paris 2 (35): 81–82
  65. S2CID 83502693
    .
  66. .
  67. ^ .
  68. .
  69. ^ "Komodo dragon kills boy in Indonesia". NBC News. 2007-06-04. Retrieved 2011-11-07.
  70. ^ a b Virata, John B. "5 Great Beginner Pet Lizards". Reptiles Magazine. Archived from the original on 17 May 2017. Retrieved 28 May 2017.
  71. ^ McLeod, Lianne. "An Introduction to Green Anoles as Pets". The Spruce. Retrieved 28 May 2017.
  72. ^ "Referencias culturales - todo iguanas verdes". Archived from the original on 2016-10-26. Retrieved 2018-11-25.
  73. (for vol.7). p. 48
  74. ^ "Alzheimer's research seeks out lizards". BBC. 5 April 2002.
  75. .
  76. .
  77. .

General sources

Further reading

External links

This page is based on the copyrighted Wikipedia article: Lizard. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy