MAFF (gene)

This article was updated by an external expert under a dual publication model. The corresponding peer-reviewed article was published in the journal Gene. Click to view.
Source: Wikipedia, the free encyclopedia.
MAFF
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_152878
NM_001161572
NM_001161573
NM_001161574
NM_012323

NM_010755
NM_001304830
NM_001304831
NM_001304832

RefSeq (protein)

NP_001155044
NP_001155045
NP_001155046
NP_036455

NP_001291759
NP_001291760
NP_001291761
NP_034885

Location (UCSC)Chr 22: 38.2 – 38.22 MbChr 15: 79.23 – 79.24 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Structures of the Maf family proteins.

Transcription factor MafF is a bZip Maf transcription factor protein that in humans is encoded by the MAFF gene.[5][6]

MafF is one of the small Maf proteins, which are basic region and leucine zipper (bZIP)-type transcription factors. The HUGO Gene Nomenclature Committee-approved gene name of MAFF is “v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F”.

Discovery

MafF was first cloned and identified in chicken in 1993 as a member of the small Maf (sMaf) genes.[5] MAFF has been identified in many vertebrates, including humans.[6] There are three functionally redundant sMaf proteins in vertebrates, MafF, MafG, and MafK.

Structure

MafF has a bZIP structure that consists of a basic region for DNA binding and a leucine zipper structure for dimer formation.[5] Similar to other sMafs, MafF lacks any canonical transcriptional activation domains.[5]

Expression

MAFF is broadly but differentially expressed in various tissues. MAFF expression was detected in all 16 tissues examined by the human BodyMap Project, but relatively abundant in adipose, colon, lung, prostate and skeletal muscle tissues.[7] Human MAFF gene is induced by proinflammatory cytokines, interleukin 1 beta and tumor necrosis factor in myometrial cells.[8]

Function

Because of sequence similarity, no functional differences have been observed among the sMafs in terms of their bZIP structures. sMafs form homodimers by themselves and heterodimers with other specific bZIP transcription factors, such as CNC (cap 'n' collar) proteins [p45 NF-E2 (NFE2), Nrf1 (NFE2L1), Nrf2 (NFE2L2), and Nrf3 (NFE2L3)][9][10][11][12] and Bach proteins (BACH1 and BACH2).[13]

Target genes

sMafs regulate different target genes depending on their partners. For instance, the p45-NF-E2-sMaf heterodimer regulate genes responsible for platelet production.[9][14][15] Nrf2-sMaf heterodimer regulates a battery of cytoprotective genes, such as antioxidant/xenobiotic metabolizing enzyme genes.[11][16] The Bach1-sMaf heterodimer regulates the heme oxygenase-1 gene.[13] In particular, it has been reported that MafF regulates the oxytocin receptor gene.[17] The contribution of individual sMafs to the transcriptional regulation of their target genes has not yet been well examined.

Disease linkage

Loss of sMafs results in disease-like phenotypes as summarized in table below. Mice lacking MafF are seemingly healthy under laboratory conditions.[18] However, mice lacking MafG exhibit mild neuronal phenotype and mild thrombocytopenia,[19] mice lacking Mafg and one allele of Mafk (Mafg−/−::Mafk+/−) exhibit progressive neuronal degeneration, thrombocytopenia and cataract,[20][21] and mice lacking MafG and MafK (Mafg−/−::Mafk−/−) exhibit more severe neuronal degeneration and die in the perinatal stage.[22] Mice lacking MafF, MafG and MafK are embryonic lethal, demonstrating that MafF is indispensable for embryonic development.[23] Embryonic fibroblasts that are derived from Maff−/−::Mafg-/−::Mafk−/− mice fail to activate Nrf2-dependent cytoprotective genes in response to stress.[16]

Genotype Mouse Phenotype
Maff Mafg Mafk
−/− No apparent phenotype under laboratory conditions [18]
−/− Mild motor ataxia, mild thrombocytopenia [19]
−/− +/− Severe motor ataxia, progressive neuronal degeneration, severe thrombocytopenia, and cataract [20][21]
−/− −/− More severe neuronal phenotypes, and perinatal lethal [22]
−/− +/− −/− No severe abnormality [23] (Fertile)
−/− −/− −/− Growth retardation, fetal liver hypoplasia, and lethal around embryonic day, 13.5 [23]
+/− (
homozygote
), blank (wild-type)

In addition, accumulating evidence suggests that as partners of CNC and Bach proteins, sMafs are involved in the onset and progression of various human diseases, including neurodegeneration, arteriosclerosis and cancer.

See also

Notes

References

Further reading

External links