mTORC1

Source: Wikipedia, the free encyclopedia.


Chr. 1 p36
Search for
StructuresSwiss-model
DomainsInterPro
Chr. 17 q25.3
Search for
StructuresSwiss-model
DomainsInterPro

mTORC1, also known as mammalian target of rapamycin complex 1 or mechanistic target of rapamycin complex 1, is a protein complex that functions as a nutrient/energy/redox sensor and controls protein synthesis.[1][2]

mTOR Complex 1 (mTORC1) is composed of the

β-hydroxy β-methylbutyric acid), mechanical stimuli, and oxidative stress.[2][5][6] Recently it has been also demonstrated that cellular bicarbonate metabolism can be regulated by mTORC1 signaling.[7]

The role of mTORC1 is to activate translation of proteins.[8] In order for cells to grow and proliferate by manufacturing more proteins, the cells must ensure that they have the resources available for protein production. Thus, for protein production, and therefore mTORC1 activation, cells must have adequate energy resources, nutrient availability, oxygen abundance, and proper growth factors in order for mRNA translation to begin.[4]

Activation at the lysosome

Activation of mTORC1 at the lysosome.

The TSC complex

Almost all of the variables required for protein synthesis affect mTORC1 activation by interacting with the TSC1/TSC2 protein complex.

heterodimer. This control is usually performed through phosphorylation of the complex. This phosphorylation can cause the dimer to dissociate and lose its GAP activity, or the phosphorylation can cause the heterodimer to have increased GAP activity, depending on which amino acid residue becomes phosphorylated.[10]
Thus, the signals that influence mTORC1 activity do so through activation or inactivation of the TSC1/TSC2 complex, upstream of mTORC1.

The Ragulator-Rag complex

mTORC1 interacts at the Ragulator-Rag complex on the surface of the lysosome in response to amino acid levels in the cell.[11][12] Even if a cell has the proper energy for protein synthesis, if it does not have the amino acid building blocks for proteins, no protein synthesis will occur. Studies have shown that depriving amino acid levels inhibits mTORC1 signaling to the point where both energy abundance and amino acids are necessary for mTORC1 to function. When amino acids are introduced to a deprived cell, the presence of amino acids causes Rag GTPase heterodimers to switch to their active conformation.[13] Active Rag heterodimers interact with raptor, localizing mTORC1 to the surface of late endosomes and lysosomes where the Rheb-GTP is located.[14] This allows mTORC1 to physically interact with Rheb. Thus the amino acid pathway as well as the growth factor/energy pathway converge on endosomes and lysosomes. Thus the Ragulator-Rag complex recruits mTORC1 to lysosomes to interact with Rheb.[15][16]

Regulation of the Ragulator-Rag complex

Rag activity is regulated by at least two highly conserved complexes: the "GATOR1" complex containing DEPDC5, NPRL2 and NPRL3 and the ""GATOR2" complex containing Mios, WDR24, WDR59, Seh1L, Sec13.[17] GATOR1 inhibits Rags (it is a GTPase-activating protein for Rag subunits A/B) and GATOR2 activates Rags by inhibiting DEPDC5.

Upstream signaling

The General mTORC1 Pathway.

Receptor tyrosine kinases

Akt/PKB pathway

Insulin-like growth factors can activate mTORC1 through the

14-3-3 to TSC2, disrupting the TSC1/TSC2 dimer. When TSC2 is not associated with TSC1, TSC2 loses its GAP activity and can no longer hydrolyze Rheb-GTP. This results in continued activation of mTORC1, allowing for protein synthesis via insulin signaling.[19]

Akt will also phosphorylate PRAS40, causing it to fall off of the Raptor protein located on mTORC1. Since PRAS40 prevents Raptor from recruiting mTORC1's substrates

S6K1, its removal will allow the two substrates to be recruited to mTORC1 and thereby activated in this way.[20]

Furthermore, since insulin is a factor that is secreted by pancreatic

MAPK/ERK pathway

Raf (MAPKKK), which activates Mek (MAPKK), which activates Erk (MAPK).[22] Erk can go on to activate RSK. Erk will phosphorylate the serine residue 644 on TSC2, while RSK will phosphorylate serine residue 1798 on TSC2.[23]
These phosphorylations will cause the heterodimer to fall apart, and prevent it from deactivating Rheb, which keeps mTORC1 active.

RSK has also been shown to phosphorylate raptor, which helps it overcome the inhibitory effects of PRAS40.[24]

JNK pathway

c-Jun N-terminal kinase (JNK) signaling is part of the mitogen-activated protein kinase (MAPK) signaling pathway essential in stress signaling pathways relating to gene expression, neuronal development, and cell survival. Recent studies have shown there is a direct molecular interaction where JNK phosphorylates Raptor at Ser-696, Thr-706, and Ser-863.[25][26] Therefore, mTORC1 activity is JNK-dependent. Thus, JNK activation plays a role in protein synthesis via subsequent downstream effectors of mTORC1 such as S6 kinase and eIFs.[27]

Wnt pathway

The

GSK3B).[28] When the Wnt pathway is not active, GSK3B is able to phosphorylate TSC2 on Ser1341 and Ser1337 in conjunction with AMPK phosphorylation of Ser1345. It has been found that the AMPK is required to first phosphorylate Ser1345 before GSK3B can phosphorylate its target serine residues. This phosphorylation of TSC2 would activate this complex, if GSK3B were active. Since the Wnt pathway inhibits GSK3 signaling, the active Wnt pathway is also involved in the mTORC1 pathway. Thus, mTORC1 can activate protein synthesis for the developing organism.[28]

Cytokines

tumor necrosis factor alpha (TNF-alpha) can induce mTOR activity through IKK beta, also known as IKK2.[29]
IKK beta can phosphorylate TSC1 at serine residue 487 and TSC1 at serine residue 511. This causes the heterodimer TSC complex to fall apart, keeping Rheb in its active GTP-bound state.

Energy and oxygen

Energy status

In order for translation to take place, abundant sources of energy, particularly in the form of ATP, need to be present. If these levels of ATP are not present, due to its hydrolysis into other forms like AMP, and the ratio of AMP to ATP molecules gets too high, AMPK will become activated. AMPK will go on to inhibit energy consuming pathways such as protein synthesis.[30]

AMPK can phosphorylate TSC2 on serine residue 1387, which activates the GAP activity of this complex, causing Rheb-GTP to be hydrolyzed into Rheb-GDP. This inactivates mTORC1 and blocks protein synthesis through this pathway.[31]

AMPK can also phosphorylate Raptor on two serine residues. This phosphorylated Raptor recruits 14-3-3 to bind to it and prevents Raptor from being part of the mTORC1 complex. Since mTORC1 cannot recruit its substrates without Raptor, no protein synthesis via mTORC1 occurs.[32]

LKB1, also known as

tumor suppressor that can activate AMPK. More studies on this aspect of mTORC1 may help shed light on its strong link to cancer.[33]

Hypoxic stress

When oxygen levels in the cell are low, it will limit its energy expenditure through the inhibition of protein synthesis. Under

hypoxic conditions, hypoxia inducible factor one alpha (HIF1A) will stabilize and activate transcription of REDD1, also known as DDIT4. After translation, this REDD1 protein will bind to TSC2, which prevents 14-3-3 from inhibiting the TSC complex. Thus, TSC retains its GAP activity towards Rheb, causing Rheb to remain bound to GDP and mTORC1 to be inactive.[34][35]

Due to the lack of synthesis of ATP in the mitochondria under hypoxic stress or hypoxia, AMPK will also become active and thus inhibit mTORC1 through its processes.[36]

Downstream signaling

Receptor Tyrosine Kinases and mTORC1.

mTORC1 activates transcription and translation through its interactions with

4E-BP1, the eukaryotic initiation factor 4E (eIF4E) binding protein 1, primarily via phosphorylation and dephosphorylation of its downstream targets.[1]
S6K1 and 4E-BP1 modulate translation in eukaryotic cells. Their signaling will converge at the translation initiation complex on the 5' end of mRNA, and thus activate translation.

4E-BP1

Activated mTORC1 will phosphorylate translation repressor protein

hairpin loop has been degraded by the eIF4A helicase.[41]
Once the ribosome reaches the AUG codon, translation can begin.

S6K

Previous studies suggest that S6K signaling is mediated by mTOR in a rapamycin-dependent manner wherein S6K is displaced from the eIF3 complex upon binding of mTOR with eIF3.[42] Hypophosphorylated S6K is located on the eIF3 scaffold complex. Active mTORC1 gets recruited to the scaffold, and once there, will phosphorylate S6K to make it active.[18]

mTORC1

PDPK1.[44][45] Active S6K1 can in turn stimulate the initiation of protein synthesis through activation of S6 Ribosomal protein (a component of the ribosome) and eIF4B, causing them to be recruited to the pre-initiation complex.[46]

Active S6K can bind to the SKAR

exons come together after an intron has been spliced out. Once S6K binds to this complex, increased translation on these mRNA regions occurs.[47]

S6K1 can also participate in a positive feedback loop with mTORC1 by phosphorylating mTOR's negative regulatory domain at two sites thr-2446 and ser-2448; phosphorylation at these sites appears to stimulate mTOR activity.[48][49]

S6K also can phosphorylate programmed cell death 4 (PDCD4), which marks it for degradation by ubiquitin ligase Beta-TrCP (BTRC). PDCD4 is a tumor suppressor that binds to eIF4A and prevents it from being incorporated into the initiation complex.

Role in disease and aging

mTOR was found to be related to aging in 2001 when the ortholog of S6K, SCH9, was deleted in S. cerevisiae, doubling its lifespan.[50] This greatly increased the interest in upstream signaling and mTORC1. Studies in inhibiting mTORC1 were thus performed on the model organisms of C. elegans, fruitflies, and mice. Inhibition of mTORC1 showed significantly increased lifespans in all model species.[51][52] Disrupting the gut microbiota of infant mice was found to lead to reduced longevity with signaling of mTORC1 implicated as a potential mechanism.[53]

Based on upstream signaling of mTORC1, a clear relationship between food consumption and mTORC1 activity has been observed.

insulin growth factor pathway. In addition, amino acid consumption will stimulate mTORC1 through the branched chain amino acid/Rag pathway. Thus dietary restriction inhibits mTORC1 signaling through both upstream pathways of mTORC that converge on the lysosome.[55]

Autophagy

protein aggregates and damaged organelles that can lead to cellular dysfunction.[57]

Upon activation, mTORC1 will phosphorylate

plasma membrane, inhibiting autophagy.[59]

mTORC1's ability to inhibit autophagy while at the same time stimulate protein synthesis and cell growth can result in accumulations of damaged proteins and organelles, contributing to damage at the cellular level.[60] Because autophagy appears to decline with age, activation of autophagy may help promote longevity in humans.[61] Problems in proper autophagy processes have been linked to diabetes, cardiovascular disease, neurodegenerative diseases, and cancer.[62]

Lysosomal damage

mTORC1 is positioned on

TOR,[63] mTOR inhibition in turn activates autophagy and starts a quality control program that removes damaged lysosomes,[63] referred to as lysophagy,[64]

Reactive oxygen species

Deletion of the TOR1 gene in yeast increases cellular respiration in the mitochondria by enhancing the translation of mitochondrial DNA that encodes for the complexes involved in the electron transport chain.[67] When this electron transport chain is not as efficient, the unreduced oxygen molecules in the mitochondrial cortex may accumulate and begin to produce reactive oxygen species.[68] It is important to note that both cancer cells as well as those cells with greater levels of mTORC1 both rely more on glycolysis in the cytosol for ATP production rather than through oxidative phosphorylation in the inner membrane of the mitochondria.[69]

Inhibition of mTORC1 has also been shown to increase transcription of the

electrophilic response elements as well as antioxidants in response to increased levels of reactive oxygen species.[70]

Though AMPK induced eNOS has been shown to regulate mTORC1 in endothelium. Unlike the other cell type in endothelium eNOS induced mTORC1 and this pathway is required for mitochondrial biogenesis.[71]

Stem cells

Conservation of

aging.[72] mTORC1 activity plays a critical role in the growth and proliferation of stem cells.[73] Knocking out mTORC1 results in embryonic lethality due to lack of trophoblast development.[74] Treating stem cells with rapamycin will also slow their proliferation, conserving the stem cells in their undifferentiated condition.[73]

mTORC1 plays a role in the differentiation and proliferation of

hematopoietic stem cells. Its upregulation has been shown to cause premature aging in hematopoietic stem cells. Conversely, inhibiting mTOR restores and regenerates the hematopoietic stem cell line.[75] The mechanisms of mTORC1's inhibition on proliferation and differentiation of hematopoietic stem cells has yet to be fully elucidated.[76]

Rapamycin is used clinically as an immunosuppressant and prevents the proliferation of T cells and B cells.

As a biomolecular target

Activators

protein synthesis (i.e., the production of proteins such as myosin, titin, and actin), thereby facilitating muscle hypertrophy
.

The

sestrin2, a leucine amino acid sensor and upstream regulatory pathway of mTORC1, and is under development for the treatment of depression.[80] The drug has been found to directly and selectively activate the mTORC1 pathway, including in the mPFC, and to produce rapid-acting antidepressant effects similar to those of ketamine.[80]

Inhibitors

There have been several dietary compounds that have been suggested to inhibit mTORC1 signaling including

First generation drugs

scaffold molecule, allowing this protein to dock on the FRB regulatory region (FKBP12-Rapamycin Binding region/domain) on mTORC1.[84] The binding of the FKBP12-rapamycin complex to the FRB regulatory region inhibits mTORC1 through processes not yet known. mTORC2 is also inhibited by rapamycin in some cell culture lines and tissues, particularly those that express high levels of FKBP12 and low levels of FKBP51.[85][86][87]

Rapamycin itself is not very

rapamycin, everolimus is more selective for the mTORC1 protein complex, with little impact on the mTORC2 complex.[90] mTORC1 inhibition by everolimus has been shown to normalize tumor blood vessels, to increase tumor-infiltrating lymphocytes, and to improve adoptive cell transfer therapy.[91]

heart attacks.[93] In 2007, mTORC1 inhibitors began being approved for treatments against cancers such as renal cell carcinoma.[94] In 2008 they were approved for treatment of mantle cell lymphoma.[95] mTORC1 inhibitors have recently been approved for treatment of pancreatic cancer.[96] In 2010 they were approved for treatment of tuberous sclerosis.[97]

Second generation drugs

The second generation of inhibitors were created to overcome problems with upstream signaling upon the introduction of first generation inhibitors to the treated cells.

FKBP12, which are not produced by structurally unrelated inhibitors of mTORC such as gedatolisib, WYE-687 and XL-388.[100]

Second generation inhibitors are able to bind to the

clinical trials
.

Third generation drugs

The third generation of inhibitors were created following the realization that many of the side effects of rapamycin and rapamycin analogs were mediated not as a result of direct inhibition of mTORC1, but as a consequence of off-target inhibition of mTORC2.

Rheb, are also being developed.[107][108] Some glucose transporter inhibitors such as NV-5440 and NV-6297 are also selective inhibitors of mTORC1[109]

There have been over 1,300 clinical trials conducted with mTOR inhibitors since 1970.[110]

References

  1. ^
    PMID 15314020
    .
  2. ^ .
  3. .
  4. ^ .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. ^ .
  19. ^ .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. ^ .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. ^ .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. ^ .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. ^ .
  64. .
  65. .
  66. .
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. ^ .
  74. .
  75. ^ .
  76. .
  77. .
  78. .
  79. ^ .
  80. ^ .
  81. .
  82. .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. ^ .
  89. .
  90. .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. .
  97. .
  98. ^ .
  99. .
  100. .
  101. .
  102. .
  103. .
  104. .
  105. .
  106. .
  107. .
  108. .
  109. .
  110. .

External links

This page is based on the copyrighted Wikipedia article: MTORC1. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy