Magnesium deficiency

Source: Wikipedia, the free encyclopedia.
(Redirected from
Magnesium deficiency (medicine)
)
Magnesium deficiency
Other namesHypomagnesia, hypomagnesemia
low potassium[1]
CausesAlcoholism, starvation, diarrhea, increased urinary loss, poor absorption from the intestines, certain medications[1][2]
Diagnostic methodBlood levels < 0.6 mmol/L (1.46 mg/dL)[1]
TreatmentMagnesium salts[2]
FrequencyRelatively common (hospitalized people)[2]

Magnesium deficiency is an

low potassium.[1]

Causes include low dietary intake,

electrocardiogram (ECG) changes may be seen.[1]

Treatment is with magnesium either by mouth or intravenously.

low calcium should also be treated.[2] The condition is relatively common among people in hospitals.[2]

Signs and symptoms

Deficiency of magnesium can cause tiredness, generalized weakness,

epileptic seizures,[8] basal ganglia calcifications[9] and in extreme and prolonged cases coma, intellectual disability or death.[10] Magnesium plays an important role in carbohydrate metabolism and its deficiency may worsen insulin resistance, a condition that often precedes diabetes, or may be a consequence of insulin resistance.[11]

People being treated in an intensive care unit (ICU) who have a low magnesium level may have a higher risk of requiring mechanical ventilation, and death.[12]

Causes

Magnesium deficiency may result from gastrointestinal or kidney causes. Gastrointestinal causes include low dietary intake of magnesium, reduced gastrointestinal absorption or increased gastrointestinal loss due to rapid gastrointestinal transits. Kidney causes involve increased excretion of magnesium. Poor dietary intake of magnesium has become an increasingly important factor – many people consume diets high in refined foods such as white bread and polished rice which have been stripped of magnesium-rich plant fiber.[13]

Magnesium deficiency is not uncommon in hospitalized patients. Up to 12% of all people admitted to hospital, and as high as 60–65% of people in an intensive care unit, have hypomagnesemia.[14]

About 57% of the US population does not meet the US RDA for dietary intake of magnesium.[15] The kidneys are very efficient at maintaining body levels; however, if the diet is deficient, or certain medications such as diuretics or proton pump inhibitors are used,[16] or in chronic alcoholism,[17] levels may drop.

Low levels of magnesium in blood may be due to not enough magnesium in the diet, the intestines not absorbing enough magnesium, or the kidneys excreting too much magnesium. Deficiencies may be due to the following conditions:

Medications

Genetics

Metabolic abnormalities

Other

Pathophysiology

Magnesium is a co-factor in over 300 functions in the body regulating many kinds of biochemical reactions.

diabetes mellitus type 2, osteoporosis, and migraines.[17]

There is a direct effect on sodium (Na), potassium (K), and calcium (Ca) channels. Magnesium has several effects:

Potassium

Potassium channel efflux is inhibited by magnesium. Thus hypomagnesemia results in an increased excretion of potassium in kidney, resulting in a hypokalaemia. This condition is believed to occur secondary to the decreased normal physiologic magnesium inhibition of the ROMK channels in the apical tubular membrane.[32]

In this light, hypomagnesemia is frequently the cause of hypokalaemic patients failing to respond to potassium supplementation. Thus, clinicians should ensure that both magnesium and potassium is replaced when deficient. Patients with diabetic ketoacidosis should have their magnesium levels monitored to ensure that the serum loss of potassium, which is driven intracellularly by insulin administration, is not exacerbated by additional urinary losses. [citation needed]

Calcium

Release of calcium from the sarcoplasmic reticulum is inhibited by magnesium. Thus hypomagnesemia results in an increased intracellular calcium level. This inhibits the release of parathyroid hormone, which can result in hypoparathyroidism and hypocalcemia. Furthermore, it makes skeletal and muscle receptors less sensitive to parathyroid hormone.[14]

Arrhythmia

Magnesium is needed for the adequate function of the

Na+/K+-ATPase pumps in cardiac myocytes, the muscles cells of the heart. A lack of magnesium inhibits reuptake of potassium, causing a decrease in intracellular potassium. This decrease in intracellular potassium results in a tachycardia
.

Pre-eclampsia

Magnesium has an indirect antithrombotic effect upon platelets and endothelial function. Magnesium increases

angiotensin II, microvascular leakage, and vasospasm through its function similar to calcium channel blockers.[citation needed
] Convulsions are the result of cerebral vasospasm. The vasodilatatory effect of magnesium seems to be the major mechanism.

Asthma

Magnesium exerts a bronchodilatatory effect, probably by antagonizing calcium-mediated bronchoconstriction.[33]

Neurological effects

Diabetes mellitus

Magnesium deficiency is frequently observed in people with type 2 diabetes mellitus, with an estimated prevalence ranging between 11.0 and 47.7%.[34] Magnesium deficiency is strongly associated with high glucose and insulin resistance, which indicate that it is common in poorly controlled diabetes.[35] Patients with type 2 diabetes and a magnesium deficiency have a higher risk of heart failure, atrial fibrillation and microvascular complications.[36] Oral magnesium supplements has been demonstrated to improve insulin sensitivity and lipid profile.[37][38][39] A 2016 meta-analysis not restricted to diabetic subjects found that increasing dietary magnesium intake, while associated with a reduced risk of stroke, heart failure, diabetes, and all-cause mortality, was not clearly associated with lower risk of coronary heart disease (CHD) or total cardiovascular disease (CVD).[40]

A 2021 study on blood from 4,400 diabetic patients over 6 to 11 years reported that "People with higher levels of magnesium in the blood were found to have a significantly lower risk of cardiovascular disease", and also of diabetic foot and diabetic retinopathy. The researchers, however, stated that "we have [not] demonstrated that magnesium supplements work. Further research is needed."[41]

Homeostasis

Magnesium is abundant in nature. It can be found in green vegetables, chlorophyll (chloroplasts), cocoa derivatives, nuts, wheat, seafood, and meat. It is absorbed primarily in the duodenum of the small intestine. The rectum and sigmoid colon can absorb magnesium. Forty percent of dietary magnesium is absorbed. Hypomagnesemia stimulates and hypermagnesemia inhibits this absorption. [citation needed]

The body contains 21–28 grams of magnesium (0.864–1.152 mol). Of this, 53% is located in bone, 19% in non-muscular tissue, and 1% in extracellular fluid.[citation needed] For this reason, blood levels of magnesium are not an adequate means of establishing the total amount of available magnesium.[citation needed]

The majority of

citrate. Roughly 33% is bound to proteins, and 5–10% is not bound. [citation needed
] This "free" magnesium is essential in regulating intracellular magnesium. Normal plasma Mg is 1.7–2.3 mg/dL (0.69–0.94 mmol/L).

The kidneys regulate the serum magnesium. About 2400 mg of magnesium passes through the kidneys daily, of which 5% (120 mg) is excreted through urine. The loop of Henle is the major site for magnesium homeostasis, and 60% is reabsorbed.

Magnesium homeostasis comprises three systems: kidney, small intestine, and bone. In the acute phase of magnesium deficiency there is an increase in absorption in the distal small intestine and tubular resorption in the kidneys. When this condition persists, serum magnesium drops and is corrected with magnesium from bone tissue. The level of intracellular magnesium is controlled through the reservoir in bone tissue.

Diagnosis

Magnesium deficiency or depletion is a low total body level of magnesium; it is not easy to measure directly.[42] Typically the diagnosis is based on finding hypomagnesemia, a low blood magnesium level,[43] which often reflects low body magnesium;[6] however, magnesium deficiency can be present without hypomagnesemia, and vice versa.[42] A plasma magnesium concentration of less than 0.6 mmol/L (1.46 mg/dL) is considered to be hypomagnesemia;[1] severe disease generally has a level of less than 0.50 mmol/L (1.25 mg/dL).[2]

Electrocardiogram

The

electrocardiogram (ECG) change may show a tachycardia with a prolonged QT interval.[44] Other changes may include prolonged PR interval, ST segment depression, flipped T waves, and long QRS duration.[1]

Treatments

Treatment of magnesium deficiency depends on the degree of deficiency and the clinical effects. Replacement by mouth is appropriate for people with mild symptoms, while intravenous replacement is recommended for people with severe effects.[45]

Numerous oral

magnesium preparations are available. In two trials of magnesium oxide, one of the most common forms in magnesium dietary supplements because of its high magnesium content per weight, was found to be less bioavailable than magnesium citrate, chloride, lactate or aspartate.[46][47] Amino-acid chelate was also less bioavailable.[48]

Intravenous magnesium sulfate (MgSO4) can be given in response to heart arrhythmias to correct for hypokalemia, preventing pre-eclampsia, and has been suggested as having a potential use in asthma.[1]

Food

Food sources of magnesium include leafy green vegetables, beans, nuts, and seeds.[49]

Epidemiology

The condition is relatively common among people in hospital.[2]

History

Magnesium deficiency in humans was first described in the medical literature in 1934.[50]

Plants

A plant with magnesium deficiency

Magnesium deficiency is a detrimental plant disorder that occurs most often in strongly acidic, light, sandy soils, where magnesium can be easily leached away. Magnesium is an essential macronutrient constituting 0.2-0.4% of plants' dry matter and is necessary for normal plant growth.[51] Excess potassium, generally due to fertilizers, further aggravates the stress from magnesium deficiency,[52] as does aluminium toxicity.[53]

Magnesium has an important role in

carbon fixation. Thus low amounts of Mg lead to a decrease in photosynthetic and enzymatic activity within the plants. Magnesium is also crucial in stabilizing ribosome structures, hence, a lack of magnesium causes depolymerization of ribosomes leading to premature aging of the plant.[51] After prolonged magnesium deficiency, necrosis
and dropping of older leaves occurs. Plants deficient in magnesium also produce smaller, woodier fruits.

Magnesium deficiency in plants may be confused with

Epsom salts (as a solution of 25 grams per liter or 4 oz per gal) or crushed dolomitic limestone to the soil can rectify magnesium deficiencies. An organic treatment is to apply compost mulch, which can prevent leaching during excessive rainfall and provide plants with sufficient amounts of nutrients, including magnesium.[55]

See also

References

  1. ^
    PMID 20956045
    .
  2. ^ a b c d e f g h i j "Hypomagnesemia". Merck Manuals Professional Edition. Retrieved 27 October 2018.
  3. ^ "Definition of Magnesium Deficiency". MedicineNet.com. Archived from the original on 31 May 2014. Retrieved 31 May 2014.
  4. S2CID 4999601
    .
  5. .
  6. ^ .
  7. ^ "Finding the Best Magnesium Supplements for Migraine". Migraine Again. 2021-04-26. Retrieved 2021-06-03.
  8. S2CID 23147775
    .
  9. ^ "Basal Ganglia Calcification with Hypomagnesemia". www.japi.org. Archived from the original on 2022-06-30. Retrieved 2021-06-03.
  10. ^
    PMID 27234911
    .
  11. .
  12. .
  13. .
  14. ^ .
  15. ^ "Nutrient Intakes Percent of population 2 years old and over with adequate intakes based on average requirement". Community Nutrition Mapping Project. 2009-07-29. Retrieved 2012-02-11.
  16. ^ "FDA Drug Safety Communication: Low magnesium levels can be associated with long-term use of Proton Pump Inhibitor drugs (PPIs)". fda.gov. F.D.A. U.S. Food and Drug Administration. Retrieved 8 November 2014.
  17. ^ a b c "Magnesium: Fact Sheet for Health Professionals". nih.gov. National Institutes of Health. Retrieved 8 November 2014.
  18. ^
    S2CID 23442909
    .
  19. . Retrieved 2021-06-03.
  20. ^ "Proton Pump Inhibitor drugs (PPIs): Drug Safety Communication - Low Magnesium Levels Can Be Associated With Long-Term Use". www.fda.gov. Archived from the original on 2011-03-04.
  21. S2CID 34550326
    .
  22. ^ .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. ^ Dekhuijzen P (21 June 2021). "Magnesium deficiency increases the risk of cardiovascular disease in diabetic patients". Radboud university medical center.
  42. ^
    PMID 18568054
    .
  43. ^ Davis CP (29 March 2021). "Hypomagnesemia". Medterms medical dictionary a-z list. MedicineNet. Archived from the original on 31 May 2014. Retrieved 31 May 2014.
  44. S2CID 2726503
    .
  45. .
  46. .
  47. .
  48. .
  49. ^ "Abridged List Ordered by Nutrient Content in Household Measure Source: USDA National Nutrient Database for Standard Reference Legacy (2018) Nutrients: Magnesium, Mg(mg)" (PDF). United States Department of Agriculture. Retrieved May 20, 2020.
  50. .
  51. ^ .
  52. .
  53. .
  54. .
  55. ^ "Problem Solving: Magnesium Deficiency". Gardeners' World Magazine. 6 March 2019.

External links