Magnesium oxide

Source: Wikipedia, the free encyclopedia.

Magnesium oxide
Names
IUPAC name
Magnesium oxide
Other names
Identifiers
3D model (
JSmol
)
ChEMBL
ChemSpider
ECHA InfoCard
100.013.793 Edit this at Wikidata
EC Number
  • 215-171-9
E number E530 (acidity regulators, ...)
KEGG
RTECS number
  • OM3850000
UNII
  • InChI=1S/Mg.O
    Key: CPLXHLVBOLITMK-UHFFFAOYSA-N
  • O=[Mg]
Properties
MgO
Molar mass 40.304 g/mol[1]
Appearance White powder
Odor Odorless
Density 3.6 g/cm3[1]
Melting point 2,852 °C (5,166 °F; 3,125 K)[1]
Boiling point 3,600 °C (6,510 °F; 3,870 K)[1]
Solubility Soluble in acid, ammonia
insoluble in alcohol
Electrical resistivity
Dielectric[a]
Band gap 7.8 eV[2]
−10.2·10−6 cm3/mol[3]
Thermal conductivity
45–60 W·m−1·K−1[4]
1.7355
6.2 ± 0.6 D
Structure
Halite (cubic), cF8
Fm3m, No. 225
a = 4.212Å
Octahedral (Mg2+); octahedral (O2−)
Thermochemistry
37.2 J/mol K[8]
26.95 ± 0.15 J·mol−1·K−1[9]
Std enthalpy of
formation
fH298)
−601.6 ± 0.3 kJ·mol−1[9]
-569.3 kJ/mol[8]
Pharmacology
A02AA02 (WHO) A06AD02 (WHO), A12CC10 (WHO)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Metal fume fever, Irritant
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
P261, P264, P271, P273, P280, P302+P352, P304+P340, P305+P351+P338, P312, P333+P313, P337+P313, P362, P363, P391, P403+P233, P405
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
0
0
Flash point Non-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 15 mg/m3 (fume)[10]
REL (Recommended)
None designated[10]
IDLH
(Immediate danger)
750 mg/m3 (fume)[10]
Safety data sheet (SDS) ICSC 0504
Related compounds
Other anions
Magnesium sulfide
Other cations
Beryllium oxide
Calcium oxide
Strontium oxide
Barium oxide
Related compounds
Magnesium hydroxide
Magnesium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Magnesium oxide (

ionic bonding. Magnesium hydroxide
forms in the presence of water (MgO + H2O → Mg(OH)2), but it can be reversed by heating it to remove moisture.

Magnesium oxide was historically known as magnesia alba (literally, the white mineral from

magnesia nigra, a black mineral containing what is now known as manganese
.

Related oxides

While "magnesium oxide" normally refers to MgO, the compound magnesium peroxide MgO2 is also known. According to evolutionary crystal structure prediction,[11] MgO2 is thermodynamically stable at pressures above 116 GPa (gigapascals), and a semiconducting suboxide Mg3O2 is thermodynamically stable above 500 GPa. Because of its stability, MgO is used as a model system for investigating vibrational properties of crystals.[12]

Electric properties

Pure MgO is not conductive and has a high resistance to electric current at room temperature. The pure powder of MgO has a relative permittivity inbetween 3.2 to 9.9 with an approximate dielectric loss of tan(δ) > 2.16x103 at 1kHz.[5][6][7]

Production

Magnesium oxide is produced by the calcination of magnesium carbonate or magnesium hydroxide. The latter is obtained by the treatment of magnesium chloride MgCl
2
solutions, typically seawater, with limewater or milk of lime.[13]

Mg2+ + Ca(OH)2 → Mg(OH)2 + Ca2+

Calcining at different temperatures produces magnesium oxide of different reactivity. High temperatures 1500 – 2000 °C diminish the available surface area and produces dead-burned (often called dead burnt) magnesia, an unreactive form used as a refractory. Calcining temperatures 1000 – 1500 °C produce hard-burned magnesia, which has limited reactivity and calcining at lower temperature, (700–1000 °C) produces light-burned magnesia, a reactive form, also known as caustic calcined magnesia. Although some decomposition of the carbonate to oxide occurs at temperatures below 700 °C, the resulting materials appear to reabsorb carbon dioxide from the air.[citation needed]

Applications

Refractory insulator

MgO is prized as a refractory material, i.e. a solid that is physically and chemically stable at high temperatures. It has the useful attributes of high thermal conductivity and low electrical conductivity. According to a 2006 reference book:[14]

By far the largest consumer of magnesia worldwide is the refractory industry, which consumed about 56% of the magnesia in the United States in 2004, the remaining 44% being used in agricultural, chemical, construction, environmental, and other industrial applications.

MgO is used as a refractory material for crucibles. It is also used as an insulator in heat-resistant electrical cable.

Heating elements

It is used extensively as an electrical insulator in tubular construction heating elements as in electric stove and cooktop heating elements. There are several mesh sizes available and most commonly used ones are 40 and 80 mesh per the American Foundry Society. The extensive use is due to its high dielectric strength and average thermal conductivity. MgO is usually crushed and compacted with minimal airgaps or voids.

Cement

MgO is one of the components in Portland cement in dry process plants.

Sorel cement uses MgO as the main component in combination with MgCl2 and water.

Fertilizer

MgO has an important place as a commercial plant fertilizer[15] and as animal feed.[16]

Fireproofing

It is a principal fireproofing ingredient in construction materials. As a construction material, magnesium oxide wallboards have several attractive characteristics: fire resistance, termite resistance, moisture resistance, mold and mildew resistance, and strength, but also a severe downside as it attracts moisture and can cause moisture damage to surrounding materials [17][14][1]

Medical

Magnesium oxide is used for relief of heartburn and indigestion, as an antacid, magnesium supplement, and as a short-term laxative. It is also used to improve symptoms of indigestion. Side effects of magnesium oxide may include nausea and cramping.[18] In quantities sufficient to obtain a laxative effect, side effects of long-term use may rarely cause enteroliths to form, resulting in bowel obstruction.[19]

Waste treatment

Magnesium oxide is used extensively in the soil and groundwater remediation, wastewater treatment, drinking water treatment, air emissions treatment, and waste treatment industries for its acid buffering capacity and related effectiveness in stabilizing dissolved heavy metal species.[according to whom?]

Many heavy metals species, such as lead and cadmium, are least soluble in water at mildly basic conditions (pH in the range 8–11). Solubility of metals increases their undesired bioavailability and mobility in soil and groundwater. Granular MgO is often blended into metals-contaminating soil or waste material, which is also commonly of a low pH (acidic), in order to drive the pH into the 8–10 range. Metal-hydroxide complexes tend to precipitate out of aqueous solution in the pH range of 8–10.

MgO is packed in bags around

rocksalt, the potential release of magnesium ions dissolving in brines intruding the deep geological repository is also expected to minimize the geochemical disruption.[20]

Niche uses

Unpolished MgO crystal

Historical uses

Precautions

Inhalation of magnesium oxide fumes can cause metal fume fever.[32]

See also

Notes

  1. ^ At room temperature.[5][6][7]

References

  1. ^ .
  2. (PDF) on 2016-03-03. Retrieved 2012-03-27.
  3. .
  4. ^ Application of magnesium compounds to insulating heat-conductive fillers Archived 2013-12-30 at the Wayback Machine. konoshima.co.jp
  5. ^ a b A P, Johnson (November 1986). Structural and electrical properties of magnesium oxide powders (Masters). Durham University.
  6. ^
    S2CID 95280958
    .
  7. ^ .
  8. ^ .
  9. ^ .
  10. ^ a b c NIOSH Pocket Guide to Chemical Hazards. "#0374". National Institute for Occupational Safety and Health (NIOSH).
  11. PMID 23595296. Archived from the original
    (PDF) on 2013-12-03. Retrieved 2013-11-06.
  12. .
  13. .
  14. ^ . Retrieved 10 September 2011.
  15. ^ Nutrient Science. fertilizer101.org. Retrieved on 2017-04-26.
  16. ^ Magnesium oxide for the Animal Feed Industry. lehvoss.de
  17. .
  18. ^ Magnesium Oxide. MedlinePlus. Last reviewed 02/01/2009
  19. S2CID 24976010
    .
  20. ^ wipp.energy.gov Step-By-Step Guide for Waste Handling at WIPP. Waste Isolation Pilot Plant. wipp.energy.gov
  21. ^ "Compound Summary for CID 14792 – Magnesium Oxide". PubChem.
  22. ISSN 0030-4948
    .
  23. (PDF) on 2017-03-12. Retrieved 2015-08-08.
  24. .
  25. .
  26. ^ "Mass Deacidification: Saving the Written Word". Library of Congress. Retrieved 26 September 2011.
  27. S2CID 33709206
    .
  28. .
  29. .
  30. .
  31. .
  32. ^ Magnesium Oxide. National Pollutant Inventory, Government of Australia.

External links