Malaria vaccine

Source: Wikipedia, the free encyclopedia.

Malaria vaccine
Vaccine description
TargetMalaria
Vaccine typeProtein subunit
Clinical data
Trade namesMosquirix
Routes of
administration
Intramuscular[1]
ATC code
Legal status
Legal status
  • EU: Rx-only[1]
  • Approved in Ghana, Nigeria
Identifiers
CAS Number
ChemSpider
  • none

Malaria vaccines are vaccines that prevent malaria, a mosquito-borne infectious disease which annually affects an estimated 247 million people worldwide and causes 619,000 deaths.[2] The first approved vaccine for malaria is RTS,S, known by the brand name Mosquirix.[1] As of April 2023, the vaccine has been given to 1.5 million children living in areas with moderate-to-high malaria transmission.[3] It requires at least three doses in infants by age 2, and a fourth dose extends the protection for another 1–2 years.[4][5] The vaccine reduces hospital admissions from severe malaria by around 30%.[4]

Research continues with other malaria vaccines. The most effective malaria vaccine is the R21/Matrix-M, with a 77% efficacy rate shown in initial trials and significantly higher antibody levels than with the RTS,S vaccine. It is the first vaccine that meets the World Health Organization's (WHO) goal of a malaria vaccine with at least 75% efficacy,[6][7] and only the second malaria vaccine to be recommended by the WHO.[8] In April 2023, Ghana's Food and Drugs Authority approved the use of the R21 vaccine for use in children aged between five months and three years old.[9] Following Ghana's decision, Nigeria provisionally approved the R21 vaccine.[10]

Approved vaccines

RTS,S

RTS,S recombinant protein viruslike particle

RTS,S/AS01 (brand name Mosquirix)[1] is the first malaria vaccine approved for public use. It requires at least three doses in infants by age 2, with a fourth dose extending the protection for another 1–2 years.[4] The vaccine reduces hospital admissions from severe malaria by around 30%.[4]

RTS,S was developed by

hepatocytes and also elicits a cellular response enabling the destruction of infected hepatocytes. The CSP vaccine presented problems in the trial stage due to its poor immunogenicity. RTS,S attempted to avoid these by fusing the protein with a surface antigen from hepatitis B virus, creating a more potent and immunogenic vaccine. When tested in trials as an emulsion of oil in water and with the added adjuvants of monophosphoryl A and QS21 (SBAS2), the vaccine gave protective immunity to 7 out of 8 volunteers when challenged with P. falciparum.[11]

RTS,S was engineered using genes from the outer protein of P. falciparum malaria parasite and a portion of a hepatitis B virus plus a chemical adjuvant to boost the immune response. Infection is prevented by inducing high antibody titers that block the parasite from infecting the liver.[12] In November 2012, a Phase III trial of RTS,S found that it provided modest protection against both clinical and severe malaria in young infants.[13]

In October 2013, preliminary results of a phase III clinical trial indicated that RTS,S/AS01 reduced the number of cases among young children by almost 50 percent and among infants by around 25 percent. The study ended in 2014. The effects of a booster dose were positive, even though overall efficacy seems to wane with time. After four years, reductions were 36 percent for children who received three shots and a booster dose. Missing the booster dose reduced the efficacy against severe malaria to a negligible effect. The vaccine was shown to be less effective for infants. Three doses of vaccine plus a booster reduced the risk of clinical episodes by 26 percent over three years but offered no significant protection against severe malaria.[14]

In a bid to accommodate a larger group and guarantee a sustained availability for the general public, GSK applied for a marketing license with the European Medicines Agency (EMA) in July 2014.[15] GSK treated the project as a non-profit initiative, with most funding coming from the Gates Foundation, a major contributor to malaria eradication.[16]

In July 2015, Mosquirix received a positive scientific opinion from the European Medicines Agency (EMA) on the proposal for the vaccine to be used to vaccinate children aged 6 weeks to 17 months outside the European Union.[17][1] A pilot project for vaccination was launched on 23 April 2019 in Malawi, on 30 April 2019 in Ghana, and on 13 September 2019 in Kenya.[18][19]

In October 2021, the vaccine was endorsed by the World Health Organization for "broad use" in children, making it the first malaria vaccine to receive this recommendation.[20][21][22]

The vaccine was prequalified by WHO in July 2022.[3] In August 2022, UNICEF awarded a contract to GSK to supply 18 million doses of the RTS,S vaccine over three years. More than 30 countries have areas with moderate to high malaria transmission where the vaccine is expected to be useful.[23]

As of April 2023, 1.5 million children in Ghana, Kenya and Malawi had received at least one injection of the vaccine, with more than 4.5 million doses of the vaccine administered through the countries' routine immunization programs.[3] The next 9 countries to receive the vaccine over the next 2 years are Benin, Burkina Faso, Burundi, Cameroon, the Democratic Republic of the Congo, Liberia, Niger, Sierra Leone, and Uganda.[24]

R21/Matrix-M

Comparison between RTS,S and R21

The most effective malaria vaccine is R21/Matrix-M, with 77% efficacy shown in initial trials. It is the first vaccine that meets the World Health Organization's goal of a malaria vaccine with at least 75% efficacy.[6] It was developed through a collaboration involving the Jenner Institute at the University of Oxford, the Kenya Medical Research Institute, the London School of Hygiene and Tropical Medicine, Novavax, and the Serum Institute of India. The trials took place at the Institut de Recherche en Sciences de la Santé in Nanoro, Burkina Faso with Halidou Tinto as the principal investigator.[7] The R21 vaccine uses a circumsporozoite protein (CSP) antigen, at a higher proportion than the RTS,S vaccine. It uses the same HBsAg-linked recombinant structure, but contains no excess HBsAg.[25] It includes the Matrix-M adjuvant that is also utilized in the Novavax COVID-19 vaccine.[26]

A phase II trial was reported in April 2021, with a vaccine efficacy of 77% and antibody levels significantly higher than with the RTS,S vaccine. A booster shot of R21/Matrix-M that is given 12 months after the primary three-dose regimen maintains a high efficacy against malaria, providing high protection against symptomatic malaria for at least 2 years.[27] A phase III trial with 4,800 children across four African countries was reported in November 2022, demonstrating vaccine efficacy of 74% against a severe malaria episode.[28] Further data from multiple studies is being collected.[29] As of April 2023 data from the phase III study had not been formally published, but late-stage data from the study was shared with regulatory authorities.[9]

Ghana's

Accra, Ghana.[9][30] Following Ghana's decision, Nigeria provisionally approved the R21 vaccine.[10]

In October 2023 the WHO endorsed the R21 vaccine against malaria, end of December 2023 it was added to the list of Prequalified Vaccines.[31]

Agents under development

Screened cup of malaria-infected mosquitoes which will infect a volunteer in a clinical trial

A completely effective vaccine is not available for malaria, although several vaccines are under development.[32] Multiple vaccine candidates targeting the blood-stage of the parasite's lifecycle have been insufficient on their own.[33] Several potential vaccines targeting the pre-erythrocytic stage are being developed, with RTS,S and R-21/Matrix-M the two approved options so far.[34][13][30]

Nanoparticle enhancement of RTS,S

In 2015, researchers used a repetitive antigen display technology to engineer a nanoparticle that displayed malaria specific B cell and T cell epitopes. The particle exhibited icosahedral symmetry and carried on its surface up to 60 copies of the RTS,S protein. The researchers claimed that the density of the protein was much higher than the 14% of the GSK vaccine.[35][36]

PfSPZ vaccine

The PfSPZ vaccine is a candidate malaria vaccine developed by

sporozoites to elicit an immune response. Clinical trials have been promising, with trials in Africa, Europe, and the US protecting over 80% of volunteers.[37] It has been subject to some criticism regarding the ultimate feasibility of large-scale production and delivery in Africa, since it must be stored in liquid nitrogen
.

The PfSPZ vaccine candidate was granted fast track designation by the U.S. Food and Drug Administration in September 2016.[38]

In April 2019, a phase III trial in Bioko was announced, scheduled to start in early 2020.[39]

Other developments

Considerations

The task of developing a preventive vaccine for malaria is a complex process. There are a number of considerations to be made concerning what strategy a potential vaccine should adopt.

Parasite diversity

P. falciparum has demonstrated the capability, through the development of multiple drug-resistant parasites, for evolutionary change. The Plasmodium species has a very high rate of replication, much higher than that actually needed to ensure transmission in the parasite's lifecycle.[citation needed] This enables pharmaceutical treatments that are effective at reducing the reproduction rate, but not halting it, to exert a high selection pressure, thus favoring the development of resistance. The process of evolutionary change is one of the key considerations necessary when considering potential vaccine candidates. The development of resistance could cause a significant reduction in efficacy of any potential vaccine thus rendering useless a carefully developed and effective treatment.[44]

Choosing to address the symptom or the source

The parasite induces two main response types from the human immune system. These are anti-parasitic immunity and anti-toxic immunity.

Taking this information into consideration an ideal vaccine candidate would attempt to generate a more substantial cell-mediated and antibody response on parasite presentation. This would have the benefit of increasing the rate of parasite clearance, thus reducing the experienced symptoms and providing a level of consistent future immunity against the parasite.

Potential targets

Potential vaccine targets in the malaria lifecycle (Doolan and Hoffman)
Parasite stage Target
Sporozoite
Hepatocyte invasion; direct anti-sporozite
Hepatozoite Direct anti-hepatozoite.
Asexual erythrocytic Anti-host
receptor ligand
, anti-soluble toxin
Gametocyte Anti-gametocyte. Anti-host
erythrocyte
, antibodies blocking fertilisation, antibodies blocking egress from the mosquito midgut.

By their very nature, protozoa are more complex organisms than bacteria and viruses, with more complicated structures and lifecycles. This presents problems in vaccine development but also increases the number of potential targets for a vaccine. These have been summarised into the lifecycle stage and the antibodies that could potentially elicit an immune response.[citation needed]

The epidemiology of malaria varies enormously across the globe and has led to the belief that it may be necessary to adopt very different vaccine development strategies to target the different populations. A Type 1 vaccine is suggested for those exposed mostly to P. falciparum malaria in sub-Saharan Africa, with the primary objective to reduce the number of severe malaria cases and deaths in infants and children exposed to high transmission rates. The Type 2 vaccine could be thought of as a 'travelers' vaccine,' aiming to prevent all clinical symptoms in individuals with no previous exposure. This is another major public health problem, with malaria presenting as one of the most substantial threats to travelers' health. Problems with the available pharmaceutical therapies include costs, availability, adverse effects and contraindications, inconvenience, and compliance, many of which would be reduced or eliminated if an effective (greater than 85–90%) vaccine was developed. [citation needed]

The lifecycle of the malaria parasite is particularly complex, presenting initial developmental problems. Despite the huge number of vaccines available, there are none that target parasitic infections. The distinct developmental stages involved in the lifecycle present numerous opportunities for targeting antigens, thus potentially eliciting an immune response. Theoretically, each developmental stage could have a vaccine developed specifically to target the parasite. Moreover, any vaccine produced would ideally have the ability to be of therapeutic value as well as preventing further transmission and is likely to consist of a combination of antigens from different phases of the parasite's development. More than 30 of these antigens are being researched[when?] by teams all over the world in the hope of identifying a combination that can elicit immunity in the inoculated individual. Some of the approaches involve surface expression of the antigen, inhibitory effects of specific antibodies on the lifecycle and the protective effects through immunization or passive transfer of antibodies between an immune and a non-immune host. The majority of research into malarial vaccines has focused on the Plasmodium falciparum strain due to the high mortality caused by the parasite and the ease of carrying out in vitro/in vivo studies. The earliest vaccines attempted to use the parasitic circumsporozoite protein (CSP). This is the most dominant surface antigen of the initial pre-erythrocytic phase. However, problems were encountered due to low efficacy, reactogenicity and low immunogenicity. [citation needed]

Mix of antigenic components

Increasing the potential immunity generated against Plasmodia can be achieved by attempting to target multiple phases in the lifecycle. This is additionally beneficial in reducing the possibility of resistant parasites developing. The use of multiple-parasite antigens can therefore have a synergistic or additive effect.

One of the most successful vaccine candidates in clinical trials consists of

History

Individuals who are exposed to the parasite in endemic countries develop acquired immunity against disease and death. Such immunity does not, however prevent malarial infection; immune individuals often harbour asymptomatic parasites in their blood. This does, however, imply that it is possible to create an immune response that protects against the harmful effects of the parasite.

Research shows that if

immunoglobulin is taken from immune adults, purified, and then given to individuals who have no protective immunity, some protection can be gained.[56]

Irradiated mosquitoes

In 1967, it was reported that a level of immunity to the

sporozoites that had been irradiated by x-rays.[57] Subsequent human studies in the 1970s showed that humans could be immunized against Plasmodium vivax and Plasmodium falciparum by exposing them to the bites of significant numbers of irradiated mosquitos.[58]

From 1989 to 1999, eleven volunteers recruited from the

schizonts nor infect red blood cells.[59] Over a span of 42 weeks, 24 of 26 tests on the volunteers showed that they were protected from malaria.[59]

References

  1. ^ a b c d e "Mosquirix: Opinion on medicine for use outside EU". European Medicines Agency (EMA). Archived from the original on 23 November 2019. Retrieved 22 November 2019.
  2. .
  3. ^ a b c "Q&A on RTS,S malaria vaccine - WHO". World Health Organization. 19 April 2023. Retrieved 29 April 2023.
  4. ^ a b c d "First malaria vaccine hits 1 million dose milestone — although it has its shortcomings". NPR. 13 May 2022. Archived from the original on 13 November 2022. Retrieved 2 January 2023.
  5. .
  6. ^ a b Roxby P (23 April 2021). "Malaria vaccine hailed as potential breakthrough". BBC News. Archived from the original on 24 April 2021. Retrieved 24 April 2021.
  7. ^
    EurekAlert!. 23 April 2021. Archived
    from the original on 27 July 2021. Retrieved 24 April 2021.
  8. ^ "WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization". 2 October 2023. Retrieved 4 October 2023.
  9. ^ a b c Gallagher J (12 April 2023). "Ghana first to approve 'world-changer' malaria vaccine". BBC News. Archived from the original on 13 April 2023. Retrieved 13 April 2023.
  10. ^ a b "The country with the highest rate of malaria deaths in the world has approved Oxford's vaccine". Quartz. 18 April 2023. Retrieved 19 April 2023.
  11. PMID 24292709
    .
  12. ^ .
  13. ^ Borghino D (27 April 2015). "Malaria vaccine candidate shown to prevent thousands of cases". www.gizmag.com. Archived from the original on 6 May 2016. Retrieved 11 June 2016.
  14. ^ "GSK announces EU regulatory submission of malaria vaccine candidate RTS,S" (Press release). GSK. 24 July 2014. Archived from the original on 4 December 2016. Retrieved 30 July 2015.
  15. ^ Kelland K (7 October 2013). "GSK aims to market world's first malaria vaccine". Reuters. Archived from the original on 18 January 2016. Retrieved 9 December 2013.
  16. ^ "First malaria vaccine receives positive scientific opinion from EMA" (Press release). European Medicines Agency (EMA). 24 July 2015. Archived from the original on 3 October 2018. Retrieved 30 July 2015.
  17. ^ Alonso P (19 June 2019). "Letter to partners – June 2019" (Press release). Wuxi: World Health Organization. Archived from the original on 31 January 2022. Retrieved 22 October 2019.
  18. ^ "Malaria vaccine launched in Kenya: Kenya joins Ghana and Malawi to roll out landmark vaccine in pilot introduction" (Press release). Homa Bay: World Health Organization. 13 September 2019. Archived from the original on 22 October 2019. Retrieved 22 October 2019.
  19. ^ Davies L (6 October 2021). "WHO endorses use of world's first malaria vaccine in Africa". The Guardian. Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  20. ^ "WHO recommends groundbreaking malaria vaccine for children at risk" (Press release). World Health Organization. Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  21. ^ Mandavilli A (6 October 2021). "A 'Historical Event': First Malaria Vaccine Approved by W.H.O." The New York Times. Archived from the original on 7 October 2021. Retrieved 6 October 2021.
  22. ^ "Millions more children to benefit from malaria vaccine as UNICEF secures supply". UNICEF. 16 August 2022. Archived from the original on 2 January 2023. Retrieved 2 January 2023.
  23. S2CID 259849056
    .
  24. .
  25. ^ Lowe D (23 April 2021). "Great Malaria Vaccine News". Science Translational Medicine. Archived from the original on 15 April 2023. Retrieved 24 April 2021.
  26. S2CID 252149462
    .
  27. ^ Hein I (3 November 2022). "Malaria Vaccine Candidate 'Impressive' in Phase III Test". MedPage Today. Archived from the original on 22 January 2023. Retrieved 22 January 2023.
  28. Science Magazine. Archived
    from the original on 4 November 2022. Retrieved 22 January 2022.
  29. ^ a b Grover N (12 April 2023). "Ghana first to approve Oxford's malaria vaccine". Reuters. Archived from the original on 13 April 2023. Retrieved 13 April 2023.
  30. ^ "WHO prequalifies a second malaria vaccine, a significant milestone in prevention of the disease". www.who.int. Retrieved 11 January 2024.
  31. PMID 32981095
    .
  32. .
  33. .
  34. ^ "Researcher's nanoparticle key to new malaria vaccine". Research & Development. 4 September 2014. Archived from the original on 11 August 2016. Retrieved 20 October 2023.
  35. PMID 26468608
    .
  36. ^ "Nature report describes complete protection after 10 weeks with three doses of PfSPZ- CVac" (Press release). 15 February 2017. Archived from the original on 23 April 2021. Retrieved 26 August 2020.
  37. ^ "SANARIA PfSPZ VACCINE AGAINST MALARIA RECEIVES FDA FAST TRACK DESIGNATION" (PDF). Sanaria Inc. 22 September 2016. Archived from the original (PDF) on 23 October 2016. Retrieved 23 January 2017.
  38. S2CID 145852768
    .
  39. .
  40. .
  41. .
  42. ^ Heiberg T (15 January 2021). "South African scientists discover new chemicals that kill malaria parasite". Reuters. Archived from the original on 1 February 2021. Retrieved 2 February 2021.
  43. PMID 30559199
    .
  44. PMID 22242850. Archived from the original
    on 30 May 2013. Retrieved 23 March 2020.
  45. ^ .
  46. ^ .
  47. ^ Martino M (21 December 2011). "New candidate vaccine neutralizes all tested strains of malaria parasite". fiercebiotech.com. FierceBiotech. Archived from the original on 20 April 2012. Retrieved 23 December 2011.
  48. ^ Parish T (2 August 2012). "Lifting malaria's deadly veil: Mystery solved in quest for vaccine". Burnet Institute. Archived from the original on 18 August 2012. Retrieved 14 August 2012.
  49. PMID 22850879
    .
  50. ^ Mullin E (13 January 2014). "Scientists capture key protein structures that could aid malaria vaccine design". fiercebiotechresearch.com. Archived from the original on 18 January 2014. Retrieved 16 January 2014.
  51. PMID 24415938
    .
  52. ^ Mullin E (27 May 2014). "Antigen Discovery could advance malaria vaccine". fiercebiotechresearch.com. Archived from the original on 4 March 2016. Retrieved 22 June 2014.
  53. PMID 24855263
    .
  54. .
  55. ^ "Immunoglobulin Therapy & Other Medical Therapies for Antibody Deficiencies". Immune Deficiency Foundation. Archived from the original on 15 March 2020. Retrieved 30 September 2019.
  56. S2CID 4283134
    .
  57. .
  58. ^ .

Further reading

External links