Manufacturing

Part of a series of articles on |
Machine industry |
---|
![]() |
Manufacturing methods |
Industrial technologies |
Information and communication |
Process control |
Manufacturing is the creation or
Manufacturing engineering is the field of engineering that designs and optimizes the manufacturing process, or the steps through which raw materials are transformed into a final product. The manufacturing process begins with product design, and materials specification. These materials are then modified through manufacturing to become the desired product.
Contemporary manufacturing encompasses all intermediary stages involved in producing and integrating components of a product. Some industries, such as
The manufacturing sector is closely connected with the engineering and industrial design industries.
Etymology
The Modern English word manufacture is likely derived from the Middle French manufacture ("process of making") which itself originates from the Classical Latin manū ("hand") and Middle French facture ("making"). Alternatively, the English word may have been independently formed from the earlier English manufacture ("made by human hands") and fracture.[3] Its earliest usage in the English language was recorded in the mid-16th century to refer to the making of products by hand.[4][5]
History and development
Prehistory and ancient history


Human ancestors manufactured objects using stone and other tools long before the emergence of
Copper smelting is believed to have originated when the technology of pottery kiln allowed sufficiently high temperatures.[13] The concentration of various elements such as arsenic increase with depth in copper ore deposits and smelting of these ores yields arsenical bronze, which can be sufficiently work-hardened to be suitable for manufacturing tools.[13] Bronze is an alloy of copper with tin; the latter of which being found in relatively few deposits globally delayed true tin bronze becoming widespread. During the Bronze Age, bronze was a major improvement over stone as a material for making tools, both because of its mechanical properties like strength and ductility and because it could be cast in molds to make intricately shaped objects. Bronze significantly advanced shipbuilding technology with better tools and bronze nails, which replaced the old method of attaching boards of the hull with cord woven through drilled holes.[14] The Iron Age is conventionally defined by the widespread manufacturing of weapons and tools using iron and steel rather than bronze.[15] Iron smelting is more difficult than tin and copper smelting because smelted iron requires hot-working and can be melted only in specially designed furnaces. The place and time for the discovery of iron smelting is not known, partly because of the difficulty of distinguishing metal extracted from nickel-containing ores from hot-worked meteoritic iron.[16]
During the growth of the ancient civilizations, many ancient technologies resulted from advances in manufacturing. Several of the six classic
Medieval and early modern

The
First and Second Industrial Revolutions

The
An economic recession occurred from the late 1830s to the early 1840s when the adoption of the Industrial Revolution's early innovations, such as mechanized spinning and weaving, slowed down and their markets matured. Innovations developed late in the period, such as the increasing adoption of locomotives, steamboats and steamships,
Building on improvements in vacuum pumps and materials research, incandescent light bulbs became practical for general use in the late 1870s. This invention had a profound effect on the workplace because factories could now have second and third shift workers.[30] Shoe production was mechanized during the mid 19th century.[31] Mass production of sewing machines and agricultural machinery such as reapers occurred in the mid to late 19th century.[32] The mass production of bicycles started in the 1880s.[32] Steam-powered factories became widespread, although the conversion from water power to steam occurred in England earlier than in the U.S.[33]
Modern manufacturing

Mass production was popularized in the late 1910s and 1920s by
Lean manufacturing, also known as just-in-time manufacturing, was developed in Japan in the 1930s. It is a production method aimed primarily at reducing times within the production system as well as response times from suppliers and to customers.[37][38] It was introduced in Australia in the 1950s by the British Motor Corporation (Australia) at its Victoria Park plant in Sydney, from where the idea later migrated to Toyota.[39] News spread to western countries from Japan in 1977 in two English-language articles: one referred to the methodology as the "Ohno system", after Taiichi Ohno, who was instrumental in its development within Toyota.[40] The other article, by Toyota authors in an international journal, provided additional details.[41] Finally, those and other publicity were translated into implementations, beginning in 1980 and then quickly multiplying throughout the industry in the United States and other countries.[42]
Manufacturing strategy
According to a "traditional" view of manufacturing strategy, there are five key dimensions along which the performance of manufacturing can be assessed: cost, quality, dependability, flexibility and innovation.[43]
In regard to manufacturing performance,
Manufacturing writer Terry Hill has commented that manufacturing is often seen as a less "strategic" business activity than functions such as marketing and finance, and that manufacturing managers have "come late" to business strategy-making discussions, where, as a result, they make only a reactive contribution.[49][50]
Industrial policy
Economics of manufacturing
On the other hand, most manufacturing processes may involve significant social and environmental costs. The clean-up costs of hazardous waste, for example, may outweigh the benefits of a product that creates it. Hazardous materials may expose workers to health risks. These costs are now well known and there is effort to address them by improving efficiency, reducing waste, using industrial symbiosis, and eliminating harmful chemicals.
The negative costs of manufacturing can also be addressed legally. Developed countries regulate manufacturing activity with
Finance
From a financial perspective, the goal of the manufacturing industry is mainly to achieve
Safety
Manufacturing has unique health and safety challenges and has been recognized by the National Institute for Occupational Safety and Health (NIOSH) as a priority industry sector in the National Occupational Research Agenda (NORA) to identify and provide intervention strategies regarding occupational health and safety issues.[54][55][56]
Manufacturing and investment

Surveys and analyses of trends and issues in manufacturing and investment around the world focus on such things as:
- The nature and sources of the considerable variations that occur cross-nationally in levels of manufacturing and wider industrial-economic growth;
- Competitiveness; and
- Attractiveness to foreign direct investors.
In addition to general overviews, researchers have examined the features and factors affecting particular key aspects of manufacturing development. They have compared production and investment in a range of Western and non-Western countries and presented case studies of growth and performance in important individual industries and market-economic sectors.[57][58]
On June 26, 2009,
Major manufacturing nations
According to the
UNIDO also publishes a Competitive Industrial Performance (CIP) Index, which measures the competitive manufacturing ability of different nations. The CIP Index combines a nation's gross manufacturing output with other factors like high-tech capability and the nation's impact on the world economy. Germany topped the 2020 CIP Index, followed by China, South Korea, the United States, and Japan.[64][65]
In 2023, the manufacturing industry in the United States accounted for 10.70% of the total national output, employing 8.41% of the workforce. The total value of manufacturing output reached $2.5 trillion.[66][67] In 2023, Germany's manufacturing output reached $844.93 billion, marking a 12.25% increase from 2022. The sector employed approximately 5.5 million people, accounting for around 20.8% of the workforce.[68]
List of countries by manufacturing output
These are the top 50 countries by total value of manufacturing output in U.S. dollars for its noted year according to World Bank:[69]
Rank | Country or region | Value (millions of US$) | Year |
---|---|---|---|
World | 16,182,038 | 2023 | |
1 | ![]() |
4,658,782 | 2023 |
2 | ![]() |
2,497,132 | 2023 |
3 | ![]() |
844,926 | 2023 |
4 | ![]() |
818,398 | 2023 |
5 | ![]() |
709,990 | 2023 |
6 | ![]() |
562,389 | 2023 |
7 | ![]() |
460,728 | 2023 |
8 | ![]() |
354,722 | 2023 |
9 | ![]() |
294,465 | 2023 |
10 | ![]() |
289,791 | 2023 |
11 | ![]() |
284,063 | 2023 |
12 | ![]() |
255,962 | 2023 |
13 | ![]() |
251,577 | 2023 |
14 | ![]() |
215,038 | 2023 |
15 | ![]() |
186,525 | 2023 |
16 | ![]() |
181,592 | 2023 |
17 | ![]() |
160,232 | 2023 |
18 | ![]() |
157,876 | 2023 |
19 | ![]() |
149,268 | 2020 |
20 | ![]() |
131,712 | 2023 |
21 | ![]() |
130,225 | 2023 |
22 | ![]() |
128,271 | 2023 |
23 | ![]() |
104,386 | 2023 |
24 | ![]() |
102,628 | 2023 |
25 | ![]() |
97,727 | 2023 |
26 | ![]() |
92,893 | 2023 |
27 | ![]() |
92,117 | 2023 |
28 | ![]() |
88,498 | 2023 |
29 | ![]() |
82,641 | 2022 |
30 | ![]() |
80,816 | 2023 |
31 | ![]() |
77,456 | 2023 |
32 | ![]() |
75,079 | 2023 |
33 | ![]() |
70,896 | 2023 |
34 | ![]() |
70,732 | 2023 |
35 | ![]() |
59,642 | 2023 |
36 | ![]() |
58,237 | 2014 |
37 | ![]() |
56,283 | 2023 |
38 | ![]() |
55,742 | 2023 |
39 | ![]() |
53,769 | 2023 |
40 | ![]() |
49,658 | 2021 |
41 | ![]() |
49,317 | 2022 |
42 | ![]() |
48,809 | 2023 |
43 | ![]() |
47,923 | 2023 |
44 | ![]() |
45,936 | 2023 |
45 | ![]() |
44,966 | 2023 |
46 | ![]() |
39,595 | 2023 |
47 | ![]() |
36,403 | 2023 |
48 | ![]() |
34,296 | 2023 |
49 | ![]() |
32,148 | 2023 |
50 | ![]() |
30,889 | 2023 |
See also
References
- ^ Kenton, Will. "Manufacturing". Investopedia. Archived from the original on November 17, 2020. Retrieved January 16, 2021.
- ^ Thadani, Akhil; Allen, Gregory C. (May 30, 2023). "Mapping the Semiconductor Supply Chain: The Critical Role of the Indo-Pacific Region". CSIS.
- ISBN 978-0199571123.)
{{cite book}}
: CS1 maint: DOI inactive as of November 2024 (link - ISBN 978-1138099265.
- ISBN 978-1420043396.
- ^ "Human Ancestors Hall: Homo sapiens". Smithsonian Institution. Archived from the original on May 1, 2009. Retrieved July 15, 2021.
- ^ "Ancient 'Tool Factory' Uncovered". BBC News. May 6, 1999. Archived from the original on March 18, 2007. Retrieved July 15, 2021.
- PMID 10213682.
- ^ a b Burke, Ariane. "Archaeology". Encyclopedia Americana. Archived from the original on May 21, 2008. Retrieved July 15, 2021.
- PMID 15605391.
- ISBN 978-0-534-62487-3.
- ^ Tóth, Zsuzsanna (2012). "The First Neolithic Sites in Central/South-East European Transect, Volume III: The Körös Culture in Eastern Hungary". In Anders, Alexandra; Siklósi, Zsuzsanna (eds.). Bone, Antler, and Tusk tools of the Early Neolithic Körös Culture. Oxford: BAR International Series 2334.
- ^ ISBN 978-0-87951-397-9.
- ^ Paine, Lincoln (2013). The Sea and Civilization: A Maritime History of the World. New York: Random House, LLC.
- OCLC 1146527679.
- S2CID 5908149.
- ISBN 978-1575060422.
- ^ Potts, D. T. (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
- S2CID 132452242.
- ISBN 978-0191735516. Archivedfrom the original on August 25, 2021. Retrieved July 15, 2021.
- ^ de Safita, Neathery (July 2002). "A Brief History Of Paper". St. Louis Community College. Archived from the original on August 22, 2018. Retrieved July 15, 2021.
- ^ Marchetti, Cesare (1978). "A Postmortem Technology Assessment of the Spinning Wheel: The Last 1000 Years, Technological Forecasting and Social Change, 13; pp. 91–93" (PDF). Technological Forecasting and Social Change. Archived (PDF) from the original on May 2, 2016. Retrieved July 15, 2021.
- ISBN 978-0-226-72634-2.
- ^ "Industrial History of European Countries". European Route of Industrial Heritage. Council of Europe. Archived from the original on June 23, 2021. Retrieved July 15, 2021.
- ^ ISBN 978-0-521-09418-4.
- ^ Gupta, Bishnupriya. "Cotton Textiles and the Great Divergence: Lancashire, India and Shifting Competitive Advantage, 1600–1850" (PDF). International Institute of Social History. Department of Economics, University of Warwick. Archived (PDF) from the original on September 10, 2016. Retrieved July 15, 2021.
- ISBN 978-0-87332-101-3.
- ISBN 978-0-917914-73-7)
- ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia. p. 18.
- ^ Nye, David E. (1990). Electrifying America: Social Meanings of a New Technology. Cambridge, Massachusetts, United States and London, England: The MIT Press.
- ISBN 978-0-8078-1867-1.
- ^ OCLC 1104810110.
- ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
- ^ Jerome, Harry (1934). Mechanization in Industry, National Bureau of Economic Research. p. xxviii.
- ^ Nye, David E. (1990). Electrifying America: Social Meanings of a New Technology. Cambridge, Massachusetts and London, England: MIT Press. pp. 14, 15.
- ^ Hounshell 1984, p. 288
- ISBN 978-0-915299-14-0.
- from the original on January 14, 2022. Retrieved March 6, 2023.
- ^ "Site of BMC/Leyland Australia Manufacturing Plant: Nomination as an Historic Engineering Marker" (PDF). The Institution of Engineers, Australia. September 30, 1999. Archived (PDF) from the original on September 4, 2021. Retrieved July 30, 2021.
- ^ Ashburn, A. (July 1977). "Toyota's "famous Ohno system"". American Machinist: 120–123.
- ISSN 0020-7543.
- ^ "The Founding of the Association for Manufacturing Excellence: Summarized at a Meeting of its Founders, February 2, 2001" (PDF). Target. 17 (3). Association for Manufacturing Excellence: 23–24. 2001. Archived (PDF) from the original on March 9, 2021. Retrieved July 15, 2021.
- ^ Hayes, R. H., Wheelwright, S. C. and Clark, K. B. (1988), Dynamic Manufacturing, New York: The Free Press, quoted in Wassenhove, L. van and Corbett, C. J., "Trade-Offs? What Trade Offs? (A Short Essay on Manufacturing Strategy", p. 1, INSEAD, published April 6, 1991, accessed September 27, 2023
- , accessed August 22, 2023
- ^ Skinner, W., "Focused Factory", Harvard Business Review, published May 1, 1974.
- ^ a b Wassenhove, L. van and Corbett, C. J., "Trade-Offs? What Trade Offs? (A Short Essay on Manufacturing Strategy", p. 2, INSEAD, published April 6, 1991, accessed September 27, 2023
- ^ Haas, E. A., "Breakthrough Manaufacturing", Harvard Business Review, March/April 1987, pp. 75–81
- ^ Skinner, W., "Missing the Links in Manufacturing Strategy" in Voss, C. A. (ed) (1992), Manufacturing Strategy – Process and Content, Chapman and Hall, pp. 12–25
- ^ Hill, T., Manufacturing Strategy: Developments in Approach and Analytics, University of Warwick, 1990, accessed 28 September 2023
- ^ Hill, T. (1993), Manufacturing Strategy, second edition, Macmillan, chapter 2
- hdl:10045/136803.
- ^ Young, Julie. "Unit Cost Definition". investopedia.com. Investopedia. Archived from the original on May 20, 2022. Retrieved May 20, 2022.
- from the original on March 5, 2022. Retrieved May 20, 2022.
- ^ "PPC-R01.2N-N-V2-FW | PPC Controllers | Indramat Controls | Indramat USA". indramat-usa.com. Retrieved May 30, 2024.
- ^ "Manufacturing Program". Centres for Disease Control and Prevention. February 11, 2019. Archived from the original on April 3, 2019. Retrieved March 14, 2019.
- ^ "National Occupational Research Agenda for Manufacturing". Centres for Disease Control and Prevention. February 4, 2019. Archived from the original on June 18, 2019. Retrieved March 14, 2019.
- OCLC 49552466.
- ISBN 978-0-906321-25-6. Archivedfrom the original on April 1, 2021. Retrieved November 19, 2015.
- ^ David Bailey; Soyoung Kim (June 26, 2009). "GE's Immelt says U.S. economy needs industrial renewal". Reuters. Archived from the original on December 12, 2020. Retrieved March 6, 2023.
- ^ "Why Does Manufacturing Matter? Which Manufacturing Matters?". February 2012. Archived from the original on October 8, 2012.
- ^ Martin Crutsinger (2007). "Factory Jobs: 3 Million Lost Since 2000". USA Today. Associated Press. Archived from the original on December 4, 2022. Retrieved March 6, 2023.
- ^ "UNIDO Statistics Data Portal". Archived from the original on October 5, 2021. Retrieved October 5, 2021.
- ^ "Leading Manufacturing Nations". July 15, 2021. Archived from the original on March 4, 2022. Retrieved March 14, 2022.
- ^ "UNIDO's Competitive Industrial Performance Index 2020: Country Profiles". unido.org. Archived from the original on April 6, 2022. Retrieved June 21, 2022.
- ^ "Competitive Industrial Performance Index 2020: Country Profiles ( Report)". stat.unido.org. Archived from the original on January 10, 2022. Retrieved June 21, 2022.
- ^ "2022 United States Manufacturing Facts". NAM. Retrieved November 8, 2024.
- ^ "All Employees, Manufacturing/All Employees, Total Nonfarm*100 | FRED | St. Louis Fed". fred.stlouisfed.org. Retrieved November 8, 2024.
- ^ "Employment in manufacturing in January 2023: +1.5% year on year". Retrieved November 8, 2024.
- ^ "Manufacturing, Value Added (Current US$)". World Bank. Archived from the original on January 7, 2020. Retrieved July 14, 2021.
Further reading
- Kalpakjian, Serope; Steven Schmid (2005). Manufacturing, Engineering & Technology. ISBN 978-0-13-148965-3.
External links
- New International Encyclopedia. 1905.
.
- EEF, the manufacturers' organisation – industry group representing uk manufacturers
- Enabling the Digital Thread for Smart Manufacturing
- Evidences of Metal Manufacturing History
- Grant Thornton IBR 2008 Manufacturing industry focus
- How Everyday Things Are Made: video presentations
- Manufacturing Sector of the National Occupational Research Agenda, US, 2018.