Mars

Page semi-protected
Source: Wikipedia, the free encyclopedia.

Mars
Sidereal rotation period
1.025957 d
24h 37m 22.7s[8]
Equatorial rotation velocity
241 m/s
(870 km/h; 540 mph)[2]
25.19° to its orbital plane[2]
North pole right ascension
317.68143°[6]
21h 10m 44s
North pole declination
52.88650°[6]
Albedo
Temperature209 K (−64 °C) (blackbody temperature)[14]
Surface temp. min mean max
Celsius −110 °C[15] −60 °C[16] 35 °C[15]
Fahrenheit −166 °F[15] −80 °F[16] 95 °F[15]
Surface
atm
Composition by volume

Mars is the fourth planet from the Sun. The surface of Mars is orange-red because it is covered in iron(III) oxide dust, giving it the nickname "the Red Planet".[21][22] Mars is among the brightest objects in Earth's sky and its high-contrast albedo features have made it a common subject for telescope viewing. It is classified as a terrestrial planet and is the second smallest of the Solar System's planets with a diameter of 6,779 km (4,212 mi). In terms of orbital motion, a Martian solar day (sol) is equal to 24.5 hours and a Martian solar year is equal to 1.88 Earth years (687 Earth days). Mars has two natural satellites that are small and irregular in shape: Phobos and Deimos.

The relatively flat

volcanos (such as Olympus Mons, 21.9 km or 13.6 mi tall) and one of the largest canyons in the Solar System (Valles Marineris, 4,000 km or 2,500 mi long). Geologically, the planet is fairly active with marsquakes trembling underneath the ground, dust devils sweeping across the landscape, and cirrus clouds. Carbon dioxide is substantially present in Mars's polar ice caps and thin atmosphere. During a year, there are large surface temperature swings on the surface between −78.5 °C (−109.3 °F) to 5.7 °C (42.3 °F)[c] similar to Earth's seasons, as both planets have significant axial tilt
.

Mars was formed approximately 4.5 billion years ago. During the Noachian period (4.5 to 3.5 billion years ago), Mars's surface was marked by meteor impacts, valley formation, erosion, and the possible presence of water oceans. The Hesperian period (3.5 to 3.3–2.9 billion years ago) was dominated by widespread volcanic activity and flooding that carved immense outflow channels. The Amazonian period, which continues to the present, was marked by the wind as a dominant influence on geological processes. Due to Mars's geological history, the possibility of past or present life on Mars remains of great scientific interest.

Since the late 20th century, Mars has been explored by uncrewed spacecraft and rovers, with the first flyby by the Mariner 4 probe in 1965, the first Mars orbiter by the Mars 2 probe in 1971, and the first landing by the Viking 1 probe in 1976. As of 2023, there are at least 11 active probes orbiting Mars or at the Martian surface. Mars is an attractive target for future human exploration missions, though in the 2020s no such mission is planned.

Natural history

Scientists have theorized that during the Solar System's formation, Mars was created as the result of a random process of run-away accretion of material from the protoplanetary disk that orbited the Sun. Mars has many distinctive chemical features caused by its position in the Solar System. Elements with comparatively low boiling points, such as chlorine, phosphorus, and sulfur, are much more common on Mars than on Earth; these elements were probably pushed outward by the young Sun's energetic solar wind.[23]

After the formation of the planets, the inner Solar System may have been subjected to the so-called

Borealis basin that covers 40% of the planet.[29][30]

A 2023 study shows evidence, based on the orbital inclination of Deimos (a small moon of Mars), that Mars may once have had a ring system 3.5 billion years to 4 billion years ago.[31] This ring system may have been formed from a moon, 20 times more massive than Phobos, orbiting Mars billions of years ago; and Phobos would be a remnant of that ring.[32][33]

The geological history of Mars can be split into many periods, but the following are the three primary periods:[34][35]

  • Noachian period: Formation of the oldest extant surfaces of Mars, 4.5 to 3.5 billion years ago. Noachian age surfaces are scarred by many large impact craters. The Tharsis bulge, a volcanic upland, is thought to have formed during this period, with extensive flooding by liquid water late in the period. Named after Noachis Terra.[36]
  • Hesperian period: 3.5 to between 3.3 and 2.9 billion years ago. The Hesperian period is marked by the formation of extensive lava plains. Named after Hesperia Planum.[36]
  • Amazonian period: between 3.3 and 2.9 billion years ago to the present. Amazonian regions have few meteorite impact craters but are otherwise quite varied. Olympus Mons formed during this period, with lava flows elsewhere on Mars. Named after Amazonis Planitia.[36]

Geological activity is still taking place on Mars. The Athabasca Valles is home to sheet-like lava flows created about 200 million years ago. Water flows in the grabens called the Cerberus Fossae occurred less than 20 million years ago, indicating equally recent volcanic intrusions.[37] The Mars Reconnaissance Orbiter has captured images of avalanches.[38][39]

Physical characteristics

Mars is approximately half the diameter of Earth, with a surface area only slightly less than the total area of Earth's dry land.[2] Mars is less dense than Earth, having about 15% of Earth's volume and 11% of Earth's mass, resulting in about 38% of Earth's surface gravity. Mars is the only presently known example of a desert planet, a rocky planet with a surface akin to that of Earth's hot deserts. The red-orange appearance of the Martian surface is caused by ferric oxide, or rust.[40] It can look like butterscotch;[41] other common surface colors include golden, brown, tan, and greenish, depending on the minerals present.[41]

Internal structure

Internal structure of Mars as of 2024.[42][43][44][45]

Like Earth, Mars is differentiated into a dense metallic core overlaid by less dense rocky layers.[46][47] The outermost layer is the crust, which is on average about 42–56 kilometres (26–35 mi) thick,[42] with a minimum thickness of 6 kilometres (3.7 mi) in Isidis Planitia, and a maximum thickness of 117 kilometres (73 mi) in the southern Tharsis plateau.[48] For comparison, Earth's crust averages 27.3 ± 4.8 km in thickness.[49] The most abundant elements in the Martian crust are silicon, oxygen, iron, magnesium, aluminium, calcium, and potassium. Mars is confirmed to be seismically active;[50] in 2019 it was reported that InSight had detected and recorded over 450 marsquakes and related events.[51][52]

Beneath the crust is a silicate

volcanic features on the planet's surface. The upper Martian mantle is a low-velocity zone, where the velocity of seismic waves is lower than surrounding depth intervals. The mantle appears to be rigid down to the depth of about 500 km, giving Mars a very thick lithosphere compared to Earth. Below this the mantle gradually becomes more ductile, and the seismic wave velocity starts to grow again.[43] The Martian mantle does not appear to have a thermally insulating layer analogous to Earth's lower mantle; instead, below 1050 km in depth, it becomes mineralogically similar to Earth's transition zone.[44] At the bottom of the mantle lies a basal liquid silicate layer approximately 150–180 km thick.[53][45]

Mars's iron and nickel core is completely molten, with no solid inner core.[54][55] It is around half of Mars's radius, approximately 1650–1675 km, and is enriched in light elements such as sulfur, oxygen, carbon, and hydrogen.[56][57]

Surface geology

This page is based on the copyrighted Wikipedia article: Mars. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy