Medicinal uses of fungi

Source: Wikipedia, the free encyclopedia.
(Redirected from
Medicinal fungi
)

Medicinal fungi are

psychotropic drugs, immunosuppressants and fungicides
.

History

Although fungi products have long been used in traditional medicine, the ability to identify beneficial properties and then extract the active ingredient started with the discovery of penicillin by Alexander Fleming in 1928.[1] Since that time, many potential antibiotics were discovered and the potential for various fungi to synthesize biologically active molecules useful in various clinical therapies has been under research. Pharmacological research identified antifungal, antiviral, and antiprotozoan compounds from fungi.[2]

Alexandr Solzhenitsyn's 1967 novel Cancer Ward.[3]

Research and drug development

Cancer

There is no good evidence that any type of mushroom or mushroom extract can prevent or cure cancer.

better source needed
]


11,11'-

farnesyl transferase inhibitors that can be made by Penicillium.[6] 3-O-Methylfunicone, anicequol, duclauxin, and rubratoxin B, are anticancer/cytotoxic metabolites of Penicillium.[citation needed
]

Penicillium is a potential source of the leukemia medicine asparaginase.[7]

Some countries have approved beta-glucan fungal extracts lentinan, polysaccharide-K, and polysaccharide peptide as immunologic adjuvants.[8]

Antibacterial agents (antibiotics)

Alexander Fleming led the way to the beta-lactam antibiotics with the Penicillium mold and penicillin. Subsequent discoveries included alamethicin, aphidicolin, brefeldin A, cephalosporin,[9] cerulenin, citromycin, eupenifeldin, fumagillin,[9] fusafungine, fusidic acid,[9] helvolic acid,[9] itaconic acid, MT81, nigrosporin B, usnic acid, verrucarin A, vermiculine and many others.

Ling Zhi-8, an immunomodulatory protein isolated from Ganoderma lucidum

Antibiotics retapamulin, tiamulin, and valnemulin are derivatives of the fungal metabolite pleuromutilin. Plectasin, austrocortilutein, austrocortirubin, coprinol, oudemansin A, strobilurin, illudin, pterulone, and sparassol are under research for their potential antibiotic activity.[citation needed]

Cholesterol biosynthesis inhibitors

statins
.

Statins are an important class of cholesterol-lowering drugs; the first generation of statins were derived from fungi.[10] Lovastatin, the first commercial statin, was extracted from a fermentation broth of Aspergillus terreus.[10] Industrial production is now capable of producing 70 mg lovastatin per kilogram of substrate.[11] The red yeast rice fungus, Monascus purpureus, can synthesize lovastatin, mevastatin, and the simvastatin precursor monacolin J. Nicotinamide riboside, a cholesterol biosynthesis inhibitor, is made by Saccharomyces cerevisiae.[citation needed
]

Antifungals

Some antifungals are derived or extracted from other fungal species.

echinocandins, are all extracted from fungi. Anidulafungin is a derivative of an Aspergillus metabolite.[citation needed
]

Antivirals

Many mushrooms contain potential antiviral compounds remaining under preliminary research, such as: Lentinus edodes, Ganoderma lucidum, Ganoderma colossus, Hypsizygus marmoreus, Cordyceps militaris, Grifola frondosa, Scleroderma citrinum, Flammulina velutipes, and Trametes versicolor, Fomitopsis officinalis.[14][15][16][17]

Immunosuppressants

Bredinin was found in Eupenicillium brefeldianum and mycophenolic acid in Penicillium stoloniferum. Thermophilic fungi were the source of the fingolimod precursor myriocin. Aspergillus synthesizes immunosuppressants gliotoxin and endocrocin. Subglutinols are immunosuppressants isolated from Fusarium subglutinans.[18]

Malaria

Codinaeopsin, efrapeptins, zervamicins, and antiamoebin are made by fungi, and remain under basic research.[19]

Diabetes

Many fungal isolates act as

DPP-4 inhibitors, alpha-glucosidase inhibitors, and alpha amylase inhibitors in laboratory studies. Ternatin is a fungal isolate that may affect hyperglycemia.[20]

Psychotropic effects

Numerous fungi have well-documented psychotropic effects, some of them severe and associated with acute and life-threatening side-effects.

fly agaric. More widely used informally are a range of fungi collectively known as "magic mushrooms", which contain psilocybin and psilocin.[21]

The history of bread-making records deadly ergotism caused by

ergot alkaloid drugs have subsequently been extracted from or synthesised starting from ergot; these include ergotamine, dihydroergotamine, ergometrine, ergocristine, ergocryptine, ergocornine, methysergide, bromocriptine, cabergoline, and pergolide.[22][24]

Vitamin D2

The photochemistry of vitamin D2 biosynthesis

Fungi are a source of

vitamin D2 upon exposure to ultraviolet light.[25][26][27]

Yeasts

The yeast

ascorbic acid and riboflavin. Pichia is used to produce the amino acid tryptophan and the vitamin pyridoxine. Rhodotorula is used to produce the amino acid phenylalanine. Moniliella is used industrially to produce the sugar alcohol erythritol.[citation needed
]

References

  1. ^ "Discovery and Development of Penicillin". American Chemical Society, International Historic Chemical Landmarks. 2020. Retrieved 11 March 2020.
  2. S2CID 7189999
    .
  3. .
  4. ^ "Medicinal mushrooms in cancer treatment". Cancer Research UK. Retrieved 4 November 2022.
  5. ^ Trafton, Anne (27 February 2013). "Research update: Chemists find help from nature in fighting cancer". MIT News.
  6. PMID 16279417
    .
  7. .
  8. .
  9. ^ .
  10. ^ .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. ^ a b "Hallucinogenic mushrooms drug profile". The European Monitoring Centre for Drugs and Drug Addiction.
  22. ^
    PMID 17149427
    .
  23. ^ Shiel, William C. "Medical Definition of Ergotism". MedicineNet. Retrieved 18 October 2020.
  24. PMID 17202453
    .
  25. .
  26. .
  27. .
  28. ^ Peplow, Mark (16 April 2013). "Sanofi launches malaria drug production". Chemistry World.

External links