Microwave

Page semi-protected
Source: Wikipedia, the free encyclopedia.

Frazier Peak, Ventura County, California. The apertures of the dishes are covered by plastic sheets (radomes
) to keep out moisture.

Microwave is a form of electromagnetic radiation with wavelengths shorter than other radio waves (as originally discovered) but longer than infrared waves. Its wavelength ranges from about one meter to one millimeter, corresponding to frequencies between 300 MHz and 300 GHz, broadly construed.[1][2][3][4][5][6] A more common definition in radio-frequency engineering is the range between 1 and 100 GHz (wavelengths between 30 cm and 3 mm),[2] or between 1 and 3000 GHz (30 cm and 0.1 mm).[7][8] The

radio technology
.

The boundaries between

ultra-high-frequency
(UHF) are fairly arbitrary and are used variously between different fields of study. In all cases, microwaves include the entire super high frequency (SHF) band (3 to 30 GHz, or 10 to 1 cm) at minimum. A broader definition includes UHF and
millimeter wave
; 30 to 300 GHz) bands as well.

Extremely high frequency is the International Telecommunication Union designation for the band of radio frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz)

Frequencies in the microwave range are often referred to by their

IEEE radar band designations: S, C, X, Ku, K, or Ka band
, or by similar NATO or EU designations.

Microwaves travel by

radio waves, they do not diffract around hills, follow the earth's surface as ground waves, or reflect from the ionosphere
, so terrestrial microwave communication links are limited by the visual horizon to about 40 miles (64 km). At the high end of the band, they are absorbed by gases in the atmosphere, limiting practical communication distances to around a kilometer.

Microwaves are widely used in modern technology, for example in

keyless entry systems, and for cooking food in microwave ovens
.

Electromagnetic spectrum

Microwaves occupy a place in the electromagnetic spectrum with frequency above ordinary radio waves, and below infrared light:

Electromagnetic spectrum
Name Wavelength Frequency (Hz) Photon energy (eV)
Gamma ray < 0.01 nm > 30
E
Hz
> 124 keV
X-ray 0.01 nm – 10 nm 30 EHz – 30
P
Hz
124 keV – 124 eV
Ultraviolet 10 nm – 400 nm 30 PHz – 750 THz 124 eV – 3 eV
Visible light
400 nm – 750 nm 750 THz – 400 THz 3 eV – 1.7 eV
Infrared 750 nm – 1 mm 400 THz – 300 GHz 1.7 eV – 1.24
me
V
Microwave 1 mm – 1 m 300 GHz – 300 MHz 1.24 meV – 1.24 µeV
Radio
≥ 1 m ≤ 300 MHz ≤ 1.24 µeV

In descriptions of the electromagnetic spectrum, some sources classify microwaves as radio waves, a subset of the radio wave band, while others classify microwaves and radio waves as distinct types of radiation. This is an arbitrary distinction.[citation needed]

Frequency bands

Bands of frequencies in the microwave spectrum are designated by letters. Unfortunately, there are several incompatible band designation systems, and even within a system the frequency ranges corresponding to some of the letters vary somewhat between different application fields.[9][10] The letter system had its origin in World War 2 in a top-secret U.S. classification of bands used in radar sets; this is the origin of the oldest letter system, the IEEE radar bands. One set of microwave frequency bands designations by the Radio Society of Great Britain (RSGB), is tabulated below:

Microwave frequency bands
Designation Frequency range Wavelength range Typical uses
L band 1 to 2 GHz 15 cm to 30 cm military telemetry, GPS, mobile phones (GSM), amateur radio
S band 2 to 4 GHz 7.5 cm to 15 cm weather radar, surface ship radar, some communications satellites, microwave ovens, microwave devices/communications, radio astronomy, mobile phones, wireless LAN, Bluetooth, ZigBee, GPS, amateur radio
C band 4 to 8 GHz 3.75 cm to 7.5 cm long-distance radio telecommunications, wireless LAN, amateur radio
X band 8 to 12 GHz 25 mm to 37.5 mm satellite communications, radar, terrestrial broadband, space communications, amateur radio, molecular rotational spectroscopy
Ku band 12 to 18 GHz 16.7 mm to 25 mm satellite communications, molecular rotational spectroscopy
K band 18 to 26.5 GHz 11.3 mm to 16.7 mm radar, satellite communications, astronomical observations, automotive radar, molecular rotational spectroscopy
Ka band 26.5 to 40 GHz 5.0 mm to 11.3 mm satellite communications, molecular rotational spectroscopy
Q band 33 to 50 GHz 6.0 mm to 9.0 mm satellite communications, terrestrial microwave communications, radio astronomy, automotive radar, molecular rotational spectroscopy
U band 40 to 60 GHz 5.0 mm to 7.5 mm
V band 50 to 75 GHz 4.0 mm to 6.0 mm millimeter wave radar research, molecular rotational spectroscopy and other kinds of scientific research
W band 75 to 110 GHz 2.7 mm to 4.0 mm satellite communications, millimeter-wave radar research, military radar targeting and tracking applications, and some non-military applications, automotive radar
F band 90 to 140 GHz 2.1 mm to 3.3 mm SHF transmissions: Radio astronomy, microwave devices/communications, wireless LAN, most modern radars, communications satellites, satellite television broadcasting,
DBS
, amateur radio
D band 110 to 170 GHz 1.8 mm to 2.7 mm EHF transmissions: Radio astronomy, high-frequency microwave radio relay, microwave remote sensing, amateur radio, directed-energy weapon, millimeter wave scanner

Other definitions exist.[11]

The term P band is sometimes used for UHF frequencies below the L band but is now obsolete per IEEE Std 521.

When radars were first developed at K band during World War 2, it was not known that there was a nearby absorption band (due to water vapor and oxygen in the atmosphere). To avoid this problem, the original K band was split into a lower band, Ku, and upper band, Ka.[12]

Propagation

The atmospheric attenuation of microwaves and far infrared radiation in dry air with a precipitable water vapor level of 0.001 mm. The downward spikes in the graph correspond to frequencies at which microwaves are absorbed more strongly. This graph includes a range of frequencies from 0 to 1 THz; the microwaves are the subset in the range between 0.3 and 300 gigahertz.

Microwaves travel solely by line-of-sight paths; unlike lower frequency radio waves, they do not travel as ground waves which follow the contour of the Earth, or reflect off the ionosphere (skywaves).[13] Although at the low end of the band they can pass through building walls enough for useful reception, usually rights of way cleared to the first Fresnel zone are required. Therefore, on the surface of the Earth, microwave communication links are limited by the visual horizon to about 30–40 miles (48–64 km). Microwaves are absorbed by moisture in the atmosphere, and the attenuation increases with frequency, becoming a significant factor (rain fade) at the high end of the band. Beginning at about 40 GHz, atmospheric gases also begin to absorb microwaves, so above this frequency microwave transmission is limited to a few kilometers. A spectral band structure causes absorption peaks at specific frequencies (see graph at right). Above 100 GHz, the absorption of electromagnetic radiation by Earth's atmosphere is so effective that it is in effect opaque, until the atmosphere becomes transparent again in the so-called infrared and optical window frequency ranges.

Troposcatter

In a microwave beam directed at an angle into the sky, a small amount of the power will be randomly scattered as the beam passes through the troposphere.[13] A sensitive receiver beyond the horizon with a high gain antenna focused on that area of the troposphere can pick up the signal. This technique has been used at frequencies between 0.45 and 5 GHz in tropospheric scatter (troposcatter) communication systems to communicate beyond the horizon, at distances up to 300 km.

Antennas

Waveguide is used to carry microwaves. Example of waveguides and a diplexer in an air traffic control radar

The short

inverted F antenna
(PIFA) used in cell phones.

Their short

frequency reuse by nearby transmitters. Parabolic ("dish") antennas are the most widely used directive antennas at microwave frequencies, but horn antennas, slot antennas and lens antennas are also used. Flat microstrip antennas are being increasingly used in consumer devices. Another directive antenna practical at microwave frequencies is the phased array
, a computer-controlled array of antennas that produces a beam that can be electronically steered in different directions.

At microwave frequencies, the

waveguides. Due to the high cost and maintenance requirements of waveguide runs, in many microwave antennas the output stage of the transmitter or the RF front end of the receiver
is located at the antenna.

Design and analysis

The term microwave also has a more technical meaning in

circuit theory.[14][15] Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the circuit, so that lumped-element circuit theory is inaccurate, and instead distributed circuit elements
and transmission-line theory are more useful methods for design and analysis.

As a consequence, practical microwave circuits tend to move away from the discrete

resonant stubs.[14] In turn, at even higher frequencies, where the wavelength of the electromagnetic waves becomes small in comparison to the size of the structures used to process them, microwave techniques become inadequate, and the methods of optics
are used.

Sources

Cutaway view inside a cavity magnetron as used in a microwave oven (left). Antenna splitter: microstrip techniques become increasingly necessary at higher frequencies (right).
Disassembled radar speed gun. The grey assembly attached to the end of the copper-colored horn antenna is the Gunn diode which generates the microwaves.

High-power microwave sources use specialized

magnetron (used in microwave ovens), klystron, traveling-wave tube (TWT), and gyrotron. These devices work in the density modulated mode, rather than the current
modulated mode. This means that they work on the basis of clumps of electrons flying ballistically through them, rather than using a continuous stream of electrons.

Low-power microwave sources use solid-state devices such as the field-effect transistor (at least at lower frequencies), tunnel diodes, Gunn diodes, and IMPATT diodes.[16] Low-power sources are available as benchtop instruments, rackmount instruments, embeddable modules and in card-level formats. A maser is a solid-state device which amplifies microwaves using similar principles to the laser, which amplifies higher frequency light waves.

All warm objects emit low level microwave

cosmic microwave background radiation (CMBR), for example, is a weak microwave noise filling empty space which is a major source of information on cosmology's Big Bang theory of the origin of the Universe
.

Applications

Microwave technology is extensively used for

frequency reuse; their comparatively higher frequencies allow broad bandwidth and high data transmission rates, and antenna sizes are smaller than at lower frequencies because antenna size is inversely proportional to the transmitted frequency. Microwaves are used in spacecraft communication, and much of the world's data, TV, and telephone communications are transmitted long distances by microwaves between ground stations and communications satellites. Microwaves are also employed in microwave ovens and in radar
technology.

Communication

A satellite dish on a residence, which receives satellite television over a Ku band 12–14 GHz microwave beam from a direct broadcast communications satellite in a geostationary orbit 35,700 kilometres (22,000 miles) above the Earth

Before the advent of

AT&T Long Lines. Starting in the early 1950s, frequency-division multiplexing
was used to send up to 5,400 telephone channels on each microwave radio channel, with as many as ten radio channels combined into one antenna for the hop to the next site, up to 70 km away.

U-NII frequencies in the 5 GHz range. Licensed long-range (up to about 25 km) Wireless Internet Access services have been used for almost a decade in many countries in the 3.5–4.0 GHz range. The FCC recently[when?
] carved out spectrum for carriers that wish to offer services in this range in the U.S. — with emphasis on 3.65 GHz. Dozens of service providers across the country are securing or have already received licenses from the FCC to operate in this band. The WIMAX service offerings that can be carried on the 3.65 GHz band will give business customers another option for connectivity.

Metropolitan area network (MAN) protocols, such as WiMAX (Worldwide Interoperability for Microwave Access) are based on standards such as IEEE 802.16, designed to operate between 2 and 11 GHz. Commercial implementations are in the 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges.

iBurst) operate between 1.6 and 2.3 GHz to give mobility and in-building penetration characteristics similar to mobile phones but with vastly greater spectral efficiency.[19]

Some

DARS
.

Microwave radio is used in

studio/transmitter link
(STL).

Most

direct-broadcast satellite. Military communications run primarily over X or Ku-band links, with Ka band being used for Milstar
.

Navigation

Beidou, the American Global Positioning System (introduced in 1978) and the Russian GLONASS
broadcast navigational signals in various bands between about 1.2 GHz and 1.6 GHz.

Radar

The parabolic antenna (lower curved surface) of an ASR-9 airport surveillance radar which radiates a narrow vertical fan-shaped beam of 2.7–2.9 GHz (S band) microwaves to locate aircraft in the airspace surrounding an airport.

millimeter waves are used for short-range radar such as collision avoidance systems
.

cosmic microwave background radiation
(CMBR), showing the improved resolution which has been achieved with better microwave radio telescopes

Radio astronomy

Microwaves emitted by astronomical radio sources; planets, stars, galaxies, and nebulas are studied in radio astronomy with large dish antennas called radio telescopes. In addition to receiving naturally occurring microwave radiation, radio telescopes have been used in active radar experiments to bounce microwaves off planets in the solar system, to determine the distance to the Moon or map the invisible surface of Venus through cloud cover.

A recently completed microwave radio telescope is the Atacama Large Millimeter Array, located at more than 5,000 meters (16,597 ft) altitude in Chile, which observes the universe in the millimeter and submillimeter wavelength ranges. The world's largest ground-based astronomy project to date, it consists of more than 66 dishes and was built in an international collaboration by Europe, North America, East Asia and Chile.[20][21]

A major recent focus of microwave radio astronomy has been mapping the

Arno Penzias and Robert Wilson. This faint background radiation, which fills the universe and is almost the same in all directions, is "relic radiation" from the Big Bang, and is one of the few sources of information about conditions in the early universe. Due to the expansion and thus cooling of the Universe, the originally high-energy radiation has been shifted into the microwave region of the radio spectrum. Sufficiently sensitive radio telescopes can detect the CMBR as a faint signal that is not associated with any star, galaxy, or other object.[22]

Heating and power application

Small microwave oven on a kitchen counter
Microwaves are widely used for heating in industrial processes. A microwave tunnel oven for softening plastic rods prior to extrusion.

A

2.45 GHz (12 cm) through food, causing dielectric heating primarily by absorption of the energy in water. Microwave ovens became common kitchen appliances in Western countries in the late 1970s, following the development of less expensive cavity magnetrons
. Water in the liquid state possesses many molecular interactions that broaden the absorption peak. In the vapor phase, isolated water molecules absorb at around 22 GHz, almost ten times the frequency of the microwave oven.

Microwave heating is used in industrial processes for drying and curing products.

Many

reactive ion etching and plasma-enhanced chemical vapor deposition
(PECVD).

Microwaves are used in stellarators and tokamak experimental fusion reactors to help break down the gas into a plasma and heat it to very high temperatures. The frequency is tuned to the cyclotron resonance of the electrons in the magnetic field, anywhere between 2–200 GHz, hence it is often referred to as Electron Cyclotron Resonance Heating (ECRH). The upcoming ITER thermonuclear reactor[23] will use up to 20 MW of 170 GHz microwaves.

Microwaves can be used to

solar arrays
that would beam power down to the Earth's surface via microwaves.

active denial system in fixed installations.[24]

Spectroscopy

Microwave radiation is used in

free radicals or transition metal ions such as Cu(II). Microwave radiation is also used to perform rotational spectroscopy and can be combined with electrochemistry as in microwave enhanced electrochemistry
.

Frequency measurement

Absorption wavemeter for measuring in the Ku band.

Microwave frequency can be measured by either electronic or mechanical techniques.

Frequency counters or high frequency heterodyne systems can be used. Here the unknown frequency is compared with harmonics of a known lower frequency by use of a low-frequency generator, a harmonic generator and a mixer. The accuracy of the measurement is limited by the accuracy and stability of the reference source.

Mechanical methods require a tunable resonator such as an absorption wavemeter, which has a known relation between a physical dimension and frequency.

In a laboratory setting,

voltage standing wave ratio on the line. However, provided a standing wave is present, they may also be used to measure the distance between the nodes
, which is equal to half the wavelength. The precision of this method is limited by the determination of the nodal locations.

Effects on health

Microwaves are

non-ionizing electromagnetic radiation) have significant adverse biological effects at low levels. Some, but not all, studies suggest that long-term exposure may have a carcinogenic effect.[26]

During World War II, it was observed that individuals in the radiation path of radar installations experienced clicks and buzzing sounds in response to microwave radiation. Research by NASA in the 1970s has shown this to be caused by thermal expansion in parts of the inner ear. In 1955 Dr. James Lovelock was able to reanimate rats chilled to 0 and 1 °C (32 and 34 °F) using microwave diathermy.[27]

When injury from exposure to microwaves occurs, it usually results from dielectric heating induced in the body. The lens and

crystalline lens of the eye[28] (in the same way that heat turns egg whites white and opaque). Exposure to heavy doses of microwave radiation (as from an oven that has been tampered with to allow operation even with the door open) can produce heat damage in other tissues as well, up to and including serious burns
that may not be immediately evident because of the tendency for microwaves to heat deeper tissues with higher moisture content.

History

Hertzian optics

Microwaves were first generated in the 1890s in some of the earliest

Hertz and the other early radio researchers were interested in exploring the similarities between radio waves and light waves, to test Maxwell's theory. They concentrated on producing short wavelength radio waves in the

electromagnetic waves
.

  • Heinrich Hertz's 450 MHz spark transmitter, 1888, consisting of 23 cm dipole and spark gap at focus of parabolic reflector
    Heinrich Hertz's 450 MHz spark transmitter, 1888, consisting of 23 cm dipole and spark gap at focus of parabolic reflector
  • Jagadish Chandra Bose in 1894 was the first person to produce millimeter waves; his spark oscillator (in box, right) generated 60 GHz (5 mm) waves using 3 mm metal ball resonators.
    millimeter waves
    ; his spark oscillator (in box, right) generated 60 GHz (5 mm) waves using 3 mm metal ball resonators.
  • Microwave spectroscopy experiment by John Ambrose Fleming in 1897 showing refraction of 1.4 GHz microwaves by paraffin prism, duplicating earlier experiments by Bose and Righi.
    Microwave spectroscopy experiment by John Ambrose Fleming in 1897 showing refraction of 1.4 GHz microwaves by paraffin prism, duplicating earlier experiments by Bose and Righi.
  • Augusto Righi's 12 GHz spark oscillator and receiver, 1895
    Augusto Righi's 12 GHz spark oscillator and receiver, 1895
1.2 GHz microwave spark transmitter (left) and coherer receiver (right) used by Guglielmo Marconi during his 1895 experiments had a range of 6.5 km (4.0 mi)

Beginning in 1894 Indian physicist

waveguide.[30]

However, since microwaves were limited to line of sight paths, they could not communicate beyond the visual horizon, and the low power of the spark transmitters then in use limited their practical range to a few miles. The subsequent development of radio communication after 1896 employed lower frequencies, which could travel beyond the horizon as ground waves and by reflecting off the ionosphere as skywaves, and microwave frequencies were not further explored at this time.

First microwave communication experiments

Practical use of microwave frequencies did not occur until the 1940s and 1950s due to a lack of adequate sources, since the

split-anode magnetron.[30]
These could generate a few watts of power at frequencies up to a few gigahertz and were used in the first experiments in communication with microwaves.

  • Antennas of 1931 experimental 1.7 GHz microwave relay link across the English Channel.
    Antennas of 1931 experimental 1.7 GHz microwave relay link across the English Channel.
  • Experimental 700 MHz transmitter 1932 at Westinghouse labs transmits voice over a mile.
    Experimental 700 MHz transmitter 1932 at Westinghouse labs transmits voice over a mile.
  • Southworth (at left) demonstrating waveguide at IRE meeting in 1938, showing 1.5 GHz microwaves passing through the 7.5 m flexible metal hose registering on a diode detector.
    Southworth (at left) demonstrating waveguide at IRE meeting in 1938, showing 1.5 GHz microwaves passing through the 7.5 m flexible metal hose registering on a diode detector.
  • The first modern horn antenna in 1938 with inventor Wilmer L. Barrow
    The first modern horn antenna in 1938 with inventor Wilmer L. Barrow

In 1931 an Anglo-French consortium headed by

microwave relay link, across the English Channel 40 miles (64 km) between Dover, UK and Calais, France.[37][38] The system transmitted telephony, telegraph and facsimile data over bidirectional 1.7 GHz beams with a power of one-half watt, produced by miniature Barkhausen–Kurz tubes
at the focus of 10-foot (3 m) metal dishes.

A word was needed to distinguish these new shorter wavelengths, which had previously been lumped into the "

short wave" band, which meant all waves shorter than 200 meters. The terms quasi-optical waves and ultrashort waves were used briefly but did not catch on. The first usage of the word micro-wave apparently occurred in 1931.[38][39]

Radar

The development of

  • Randall and Boot's prototype cavity magnetron tube at the University of Birmingham, 1940. In use the tube was installed between the poles of an electromagnet
    Randall and Boot's prototype cavity magnetron tube at the University of Birmingham, 1940. In use the tube was installed between the poles of an electromagnet
  • First commercial klystron tube, by General Electric, 1940, sectioned to show internal construction
    First commercial klystron tube, by General Electric, 1940, sectioned to show internal construction
  • British Mk. VIII, the first microwave air intercept radar, in nose of British fighter.
    British Mk. VIII
    , the first microwave air intercept radar, in nose of British fighter.
  • Mobile US Army microwave relay station 1945 demonstrating relay systems using frequencies from 100 MHz to 4.9 GHz which could transmit up to 8 phone calls on a beam.
    Mobile US Army microwave relay station 1945 demonstrating relay systems using frequencies from 100 MHz to 4.9 GHz which could transmit up to 8 phone calls on a beam.

The first powerful sources of microwaves were invented at the beginning of World War II: the klystron tube by Russell and Sigurd Varian at Stanford University in 1937, and the cavity magnetron tube by John Randall and Harry Boot at Birmingham University, UK in 1940.[30] Ten centimeter (3 GHz) microwave radar was in use on British warplanes in late 1941 and proved to be a game changer. Britain's 1940 decision to share its microwave technology with its US ally (the Tizard Mission) significantly shortened the war. The MIT Radiation Laboratory established secretly at Massachusetts Institute of Technology in 1940 to research radar, produced much of the theoretical knowledge necessary to use microwaves. The first microwave relay systems were developed by the Allied military near the end of the war and used for secure battlefield communication networks in the European theater.

Post World War II

After World War II, microwaves were rapidly exploited commercially.

cosmic microwave background radiation
.

Radarange, installed in the kitchen of US merchant ship NS Savannah
in 1961

Microwave radar became the central technology used in

anti-aircraft defense, ballistic missile detection, and later many other uses. Radar and satellite communication motivated the development of modern microwave antennas; the parabolic antenna (the most common type), cassegrain antenna, lens antenna, slot antenna, and phased array
.

The ability of

microwave hyperthermy
.

The

fusion reactors
.

Solid state microwave devices

The development of

one-port devices like diodes
worked better.

The tunnel diode invented in 1957 by Japanese physicist Leo Esaki could produce a few milliwatts of microwave power. Its invention set off a search for better negative resistance semiconductor devices for use as microwave oscillators, resulting in the invention of the IMPATT diode in 1956 by W.T. Read and Ralph L. Johnston and the Gunn diode in 1962 by J. B. Gunn.[30] Diodes are the most widely used microwave sources today.

Two low-noise

directional couplers. In 1969 Kaneyuki Kurokawa derived mathematical conditions for stability in negative resistance circuits which formed the basis of microwave oscillator design.[42]

Microwave integrated circuits

ku band microstrip circuit used in satellite television dish.

Prior to the 1970s microwave devices and circuits were bulky and expensive, so microwave frequencies were generally limited to the output stage of transmitters and the

GPS devices, and modern wireless devices, such as smartphones, Wi-Fi, and Bluetooth
which connect to networks using microwaves.

directional couplers, diplexers, filters and antennas to be made, thus allowing compact microwave circuits to be constructed.[30]

field effect transistor made with two different semiconductors, AlGaAs and GaAs, using heterojunction technology, and the similar HBT (heterojunction bipolar transistor).[30]

GaAs can be made semi-insulating, allowing it to be used as a

passive components, as well as transistors, can be fabricated by lithography.[30] By 1976 this led to the first integrated circuits (ICs) which functioned at microwave frequencies, called monolithic microwave integrated circuits (MMIC).[30] The word "monolithic" was added to distinguish these from microstrip PCB circuits, which were called "microwave integrated circuits" (MIC). Since then, silicon MMICs have also been developed. Today MMICs have become the workhorses of both analog and digital high-frequency electronics, enabling the production of single-chip microwave receivers, broadband amplifiers, modems, and microprocessors
.

See also

References

  1. .
  2. ^ .
  3. .
  4. .
  5. .
  6. ^ "Electromagnetic radiation - Microwaves, Wavelengths, Frequency | Britannica". www.britannica.com. Retrieved 2023-08-15.
  7. ^ "Details for IEV number 713-06-03: "microwave"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2024-03-27.
  8. ^ "Details for IEV number 701-02-12: "radio wave"". International Electrotechnical Vocabulary (in Japanese). Retrieved 2024-03-27.
  9. ^ "Frequency Letter bands". Microwave Encyclopedia. Microwaves101 website, Institute of Electrical and Electronics Engineers (IEEE). 14 May 2016. Retrieved 1 July 2018.
  10. .
  11. ^ See "eEngineer – Radio Frequency Band Designations". Radioing.com. Retrieved 2011-11-08., PC Mojo – Webs with MOJO from Cave Creek, AZ (2008-04-25). "Frequency Letter bands – Microwave Encyclopedia". Microwaves101.com. Archived from the original on 2014-07-14. Retrieved 2011-11-08., Letter Designations of Microwave Bands.
  12. ^ Skolnik, Merrill I. (2001) Introduction to Radar Systems, Third Ed., p. 522, McGraw Hill. 1962 Edition full text
  13. ^ .
  14. ^ .
  15. .
  16. ^ Microwave Oscillator Archived 2013-10-30 at the Wayback Machine notes by Herley General Microwave
  17. ^ .
  18. . Retrieved 12 July 2010.
  19. ^ "IEEE 802.20: Mobile Broadband Wireless Access (MBWA)". Official web site. Retrieved August 20, 2011.
  20. ^ "ALMA website". Retrieved 2011-09-21.
  21. ^ "Welcome to ALMA!". Retrieved 2011-05-25.
  22. ^ Wright, E.L. (2004). "Theoretical Overview of Cosmic Microwave Background Anisotropy". In W. L. Freedman (ed.). Measuring and Modeling the Universe. Carnegie Observatories Astrophysics Series. .
  23. ^ "The way to new energy". ITER. 2011-11-04. Retrieved 2011-11-08.
  24. ^ Silent Guardian Protection System. Less-than-Lethal Directed Energy Protection. raytheon.com
  25. ^ Nave, Rod. "Interaction of Radiation with Matter". HyperPhysics. Retrieved 20 October 2014.
  26. PMID 9467086
    .
  27. .
  28. .
  29. .
  30. ^ .
  31. ^ .
  32. ^ Emerson, D.T. (February 1998). "The work of Jagdish Chandra Bose: 100 years of MM-wave research". National Radio Astronomy Observatory.
  33. ^ . Retrieved March 24, 2015.
  34. .
  35. .
  36. .
  37. ^ "Microwaves span the English Channel" (PDF). Short Wave Craft. Vol. 6, no. 5. New York: Popular Book Co. September 1935. pp. 262, 310. Retrieved March 24, 2015.
  38. ^ a b Free, E.E. (August 1931). "Searchlight radio with the new 7 inch waves" (PDF). Radio News. Vol. 8, no. 2. New York: Radio Science Publications. pp. 107–109. Retrieved March 24, 2015.
  39. .
  40. .
  41. ^ "Cooking with Short Waves" (PDF). Short Wave Craft. 4 (7): 394. November 1933. Retrieved 23 March 2015.
  42. . Retrieved December 8, 2012.

External links