Microwave engineering

Source: Wikipedia, the free encyclopedia.

Microwave engineering pertains to the study and design of

wavelengths involved distinguish this discipline from electronic engineering
. This is because there are different interactions with circuits, transmissions and propagation characteristics at microwave frequencies.

Some theories and devices that pertain to this field are antennas, radar, transmission lines, space based systems (remote sensing), measurements, microwave radiation hazards and safety measures.

During

J.C. Bose, the klystron from Russel and Varian Bross, as well as contributions from Perry Spencer, and others.[1]

The microwave domain

Apparatus and techniques may be described qualitatively as "microwave" when the wavelengths of signals are roughly the same as the dimensions of the equipment, so that the

radio waves. Instead, the distributed-element model and transmission-line theory are more useful methods for design and analysis. Open-wire and coaxial transmission lines give way to waveguides and stripline, and lumped-element tuned circuits are replaced by cavity resonators or resonant lines. Effects of reflection, polarization, scattering, diffraction and atmospheric absorption usually associated with visible light are of practical significance in the study of microwave propagation. The same equations of electromagnetic theory apply at all frequencies.[1][3]

Relevance

The microwave engineering discipline has become relevant as the

wireless radio, optical communication, faster computer circuits, and collision avoidance radar.[4]

Education

Many colleges and universities offer microwave engineering. A few examples follow.

The University of Massachusetts Amherst provides research and educational programs in microwave remote sensing, antenna design and communications systems. Courses and project work are offered leading toward graduate degrees. Specialties include microwave and RF integrated circuit design, antenna engineering, computational electromagnetics, radiowave propagation, radar and remote sensing systems, image processing, and THz imaging.[5][6]

Tufts University offers a Microwave and Wireless Engineering certificate program as part of its graduate studies programs. It can be applied toward a master's degree in electrical engineering. The student must have an appropriate bachelor's degree to enroll in this program.[4]

Auburn University offers research for the microwave arena. Wireless Engineering Research and Education Center is one of three research centers. The university also offers a Bachelor of Wireless Engineering degree with a Wireless Electrical Engineering major.[7][8][9]

Bradley University offers an undergraduate and a graduate degree in its Microwave and Wireless Engineering Program. It has an Advanced Microwave Laboratory, a Wireless Communication Laboratory and other facilities related to research.[10]

Societies

There are professional societies pertinent to this discipline:

The

IEEE Microwave Theory and Techniques Society (MTT-S) "promotes the advancement of microwave theory and its applications...". The society also publishes peer reviewed journals, and one magazine.[11]

Journals and other scholarly periodicals

There are peer reviewed journals and other scholarly periodicals that cover topics that pertains to microwave engineering. Some of these are IEEE Transactions on Microwave Theory and Techniques, IEEE Microwave and Wireless Components Letters, Microwave Magazine,[12] IET Microwaves, Antennas & Propagation,[13] and Microwave Journal.[14]

See also

References

  1. ^ a b Das, Annapurna; Sisir K. Das (2000–2009). Microwave engineering. McGraw-Hill core concepts in electrical engineering series. (1st ed.). McGraw-Hill Higher Education. .
  2. ^ "Module 11 — Microwave Principles" (Free PDF download). Navy Electricity and Electronics Training Series (NEETS). United States Navy. 1998. pp. 1–1 to 1–10. Retrieved 2011-09-04. Prepared by FTCM Frank E. Sloan
  3. ^ This paragraph was directly copied from the Wikipedia article entitled Microwave. (September 04, 2011). However this material is covered by the reliable source provided in this article (Das, Annapurna; and Sisir K. Das. Microwave Engineering. McGraw-Hill Higher Education).
  4. ^ a b Microwave and Wireless Engineering (2011). "Certificate program" (online web page). Tufts University. Retrieved 2011-09-12.
  5. ^ "Research Center & Labs" (online web page). University of Massachusetts Amherst. 2011. Retrieved 18 October 2011.
  6. ^ "Graduate Degrees" (online web page). University of Massachusetts Amherst. 2011. Retrieved 18 October 2011.
  7. ^ Research and Outreach (2011). "Overview" (online web page). Auburn University (Alabama). Retrieved 2011-09-12.
  8. ^ "Undergraduate Programs" (online web page). Auburn University (Alabama). 2011. Retrieved 2011-09-12.
  9. ^ "Wireless Engineering Program Options" (online web page). Auburn University (Alabama). 2011. Retrieved 2011-09-12.
  10. ^ "Microwave and Wireless Engineering Program" (online web page). Bradley University (Illinois). 2011. Retrieved 2011-09-12.
  11. ^ "About MTT-S" (Online web page). Retrieved 2011-09-12.
  12. ^ "MTT-S Publications" (Online web page). Retrieved 2011-09-12.
  13. ^ "IET Microwaves, Antennas and Propagation" (Online web page). Institution of Engineering and Technology. Retrieved 2011-09-12.
  14. ^ "Microwave Journal" (Online web page). Horizon House Publications. Retrieved 2011-09-12.

Further reading