Mimicry

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Photo of page from book showing pairs of butterflies of different species whose appearance closely resembles each other
Plate from Henry Walter Bates (1862) illustrating Batesian mimicry between Dismorphia species (top row, third row) and various Ithomiini (Nymphalidae, second row, bottom row)

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation.[1] Mimicry evolves if a receiver (such as a predator) perceives the similarity between a mimic (the organism that has a resemblance) and a model (the organism it resembles) and as a result changes its behaviour in a way that provides a selective advantage to the mimic.[2] The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities.[2][3] Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe.[4] Birds, for example, use sight to identify palatable insects and butterflies,[5] whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so.[6] Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.[7]

In its broadest definition, mimicry can include non-living models. The specific terms masquerade and

planthoppers, comma and geometer moth caterpillars resemble twigs, bark, leaves, bird droppings or flowers.[3][6][10][11] Many animals bear eyespots, which are hypothesized to resemble the eyes of larger animals. They may not resemble any specific organism's eyes, and whether or not animals respond to them as eyes is also unclear.[12] Nonetheless, eyespots are the subject of a rich contemporary literature.[13][14][15] The model is usually another species, except in automimicry, where members of the species mimic other members, or other parts of their own bodies, and in inter-sexual mimicry, where members of one sex mimic members of the other.[6]

as a eucalyptus twig

Mimicry can result in an evolutionary arms race if mimicry negatively affects the model, and the model can evolve a different appearance from the mimic.[6]p161 Mimicry should not be confused with other forms of convergent evolution that occurs when species come to resemble each other by adapting to similar lifestyles that have nothing to do with a common signal receiver. Mimics may have different models for different life cycle stages, or they may be polymorphic, with different individuals imitating different models, such as in Heliconius butterflies. Models themselves may have more than one mimic, though frequency-dependent selection favours mimicry where models outnumber mimics. Models tend to be relatively closely related organisms,[16] but mimicry of vastly different species is also known. Most known mimics are insects,[3] though many other examples including vertebrates are also known. Plants and fungi may also be mimics, though less research has been carried out in this area.[17][18][19][20]

Etymology

Use of the word mimicry dates to 1637. It derives from the Greek term mimetikos, "imitative", in turn from mimetos, the verbal adjective of mimeisthai, "to imitate". Originally used to describe people, "mimetic" was used in zoology from 1851, "mimicry" from 1861.[21]

Classification

Many types of mimicry have been described. An overview of each follows, highlighting the similarities and differences between the various forms. Classification is often based on function with respect to the mimic (e.g., avoiding harm). Some cases may belong to more than one class, e.g., automimicry and aggressive mimicry are not mutually exclusive, as one describes the species relationship between model and mimic, while the other describes the function for the mimic (obtaining food). The terminology used is not without debate and attempts to clarify have led to new terms being included. The term "masquerade" is sometimes used when the model is inanimate but it is differentiated from "crypsis" in its strict sense[22] by the potential response of the signal receiver. In crypsis the receiver is assumed to not respond while a masquerader confuses the recognition system of the receiver that would otherwise seek the signaller. In the other forms of mimicry, the signal is not filtered out by the sensory system of the receiver.[23] These are not mutually exclusive and in the evolution of wasp-like appearance, it has been argued that insects evolve to masquerade wasps since predatory wasps do not attack each other but this mimetic resemblance also deters vertebrate predators.[24]

Defensive

katydid mimics an ant

Defensive or protective mimicry takes place when organisms are able to avoid harmful encounters by deceiving enemies into treating them as something else.

The first three such cases discussed here entail mimicry of animals protected by

:

  • Batesian mimicry, where a harmless mimic poses as harmful.
  • Müllerian mimicry, where two or more harmful species mutually advertise themselves as harmful.
  • Mertensian mimicry
    , where a deadly mimic resembles a less harmful but lesson-teaching model.

The fourth case, Vavilovian mimicry, where weeds resemble crops, involves humans as the agent of selection.

Batesian

Common hawk-cuckoo resembles a predator, the shikra.[25]

In Batesian mimicry the mimic shares signals similar to the model, but does not have the attribute that makes it unprofitable to predators (e.g., unpalatability). In other words, a Batesian mimic is a

negative frequency-dependent selection, and it applies in most forms of mimicry. Batesian mimicry can only be maintained if the harm caused to the predator by eating a model outweighs the benefit of eating a mimic. The nature of learning is weighted in favor of the mimics, for a predator that has a bad first experience with a model tends to avoid anything that looks like it for a long time, and does not re-sample soon to see whether the initial experience was a false negative. However, if mimics become more abundant than models, then the probability of a young predator having a first experience with a mimic increases. Such systems are therefore most likely to be stable where both the model and the mimic occur, and where the model is more abundant than the mimic.[28]
This is not the case in Müllerian mimicry, which is described next.

.

There are many Batesian mimics in the order

sea snakes or lionfish.[34] In the Amazon, the helmeted woodpecker (Dryocopus galeatus), a rare species which lives in the Atlantic Forest of Brazil, Paraguay, and Argentina, has a similar red crest, black back, and barred underside to two larger woodpeckers: Dryocopus lineatus and Campephilus robustus. This mimicry reduces attacks on Dryocopus galeatus from other animals. Scientists had falsely believed that D. galeatus was a close cousin of the other two species, because of the visual similarity, and because the three species live in the same habitat and eat similar food.[35] Batesian mimicry also occurs in the plant kingdom, such as the chameleon vine, which adapts its leaf shape and colour to match that of the plant it is climbing, such that its edible leaves appear to be the less desirable leaves of its host.[36]

Müllerian

The Heliconius butterflies from the tropics of the Western Hemisphere are the classical model for Müllerian mimicry.[37]

Müllerian mimicry, named for the German naturalist

anti-predation attributes (e.g. being unpalatable). At first, Bates could not explain why this should be so—if both were harmful why did one need to mimic another? Müller put forward the first explanation and mathematical model for this phenomenon: if a common predator confuses two species, individuals in both those species are more likely to survive.[38][39] This type of mimicry is unique in several respects. Firstly, both the mimic and the model benefit from the interaction, which could thus be classified as mutualism. The signal receiver also benefits by this system, despite being deceived about species identity, as it is able to generalize the pattern to potentially harmful encounters. The distinction between mimic and model that is clear in Batesian mimicry is also blurred. Where one species is scarce and another abundant, the rare species can be said to be the mimic. When both are present in similar numbers, however, it makes more sense to speak of each as a co-mimic than of distinct 'mimic' and 'model' species, as their warning signals tend to converge.[40] Also, the mimetic species may exist on a continuum from harmless to highly noxious, so Batesian mimicry grades smoothly into Müllerian convergence.[41][42]

Comparison of Batesian and Müllerian mimicry, illustrated with a hoverfly, a wasp and a bee

The

Agraulis vanillae, Dryadula phaetusa, and Dryas iulia.[29] At least seven species of millipedes in the genera Apheloria and Brachoria (Xystodesmidae) form a Müllerian mimicry ring in the eastern United States, in which unrelated polymorphic species converge on similar colour patterns where their range overlaps.[47]

Emsleyan/Mertensian

Micrurus tener
(the Emsleyan/Mertensian mimic)
Lampropeltis triangulum annulata
(the Batesian mimic)

Emsleyan

The scenario is unusual, as it is usually the most harmful species that is the model. But if a predator dies on its first encounter with a deadly snake, it has no occasion to learn to recognize the snake's warning signals. There would then be no advantage for an extremely deadly snake in being aposematic: any predator that attacked it would be killed before it could learn to avoid the deadly prey, so the snake would be better off being camouflaged, to avoid attacks altogether. But if the predator first learnt to avoid a less deadly snake that had warning colours, the deadly species could then profit (be attacked less often) by mimicking the less dangerous snake.[50][51]

Some harmless

coral snakes (genus Micrurus) all have a red background color with black and white / yellow rings. In this system, both the milk snakes and the deadly coral snakes are mimics, whereas the false coral snakes are the model.[48]

Wasmannian

In Wasmannian mimicry, the mimic resembles a model that it lives along with in a nest or colony. Most of the models here are social insects such as ants, termites, bees and wasps.[52]

Vavilovian

Rye is a secondary crop, originally being a mimetic weed of wheat.

Vavilovian mimicry is found in

botanist and geneticist Nikolai Vavilov.[53] Selection against the weed may occur either by manually killing the weed, or by separating its seeds from those of the crop by winnowing
.

Vavilovian mimicry presents an illustration of unintentional (or rather 'anti-intentional') selection by man. Weeders do not want to select weeds and their seeds that look increasingly like cultivated plants, yet there is no other option. For example, early barnyard grass, Echinochloa oryzoides, is a weed in rice fields and looks similar to rice; its seeds are often mixed in rice and have become difficult to separate through Vavilovian mimicry.[54] Vavilovian mimics may eventually be domesticated themselves, as in the case of rye in wheat; Vavilov called these weed-crops secondary crops.[53]

Vavilovian mimicry can be classified as

defensive mimicry, in that the weed mimics a protected species. This bears strong similarity to Batesian mimicry in that the weed does not share the properties that give the model its protection, and both the model and the dupe (in this case people) are harmed by its presence. There are some key differences, though; in Batesian mimicry, the model and signal receiver are enemies (the predator would eat the protected species if it could), whereas here the crop and its human
growers are in a mutualistic relationship: the crop benefits from being dispersed and protected by people, despite being eaten by them. In fact, the crop's only "protection" relevant here is its usefulness to humans. Secondly, the weed is not eaten, but simply destroyed. The only motivation for killing the weed is its effect on crop yields. Finally, this type of mimicry does not occur in ecosystems unaltered by humans.

Gilbertian

Gilbertian mimicry involves only two species. The potential host (or prey) drives away its parasite (or predator) by mimicking it, the reverse of host-parasite aggressive mimicry. It was coined by Pasteur as a phrase for such rare mimicry systems,

Gilbertian mimicry occurs in the genus

nectaries, attracting predators of the caterpillars such as ants and wasps as a further defence.[16]

Browerian

Monarch caterpillars, shown feeding, vary in toxicity depending on their diet.

Browerian mimicry,

milkweed species of varying toxicity. These species store toxins from its host plant, which are maintained even in the adult (imago
) form. As levels of toxin vary depending on diet during the larval stage, some individuals are more toxic than others. Less palatable organisms, therefore, mimic more dangerous individuals, with their likeness already perfected.

This is not always the case, however. In sexually dimorphic species, one sex may be more of a threat than the other, which could mimic the protected sex. Evidence for this possibility is provided by the behaviour of a monkey from Gabon, which regularly ate male moths of the genus Anaphe, but promptly stopped after it tasted a noxious female.[58]

Aggressive

Predators

parasites that share some of the characteristics of a harmless species, allowing them to avoid detection by their prey or host; this can be compared with the story of the wolf in sheep's clothing as long as it is understood that no conscious deceptive intent is involved. The mimic may resemble the prey or host itself, or another organism that is either neutral or beneficial to the signal receiver. In this class of mimicry, the model may be affected negatively, positively or not at all. Just as parasites can be treated as a form of predator,[59]
host-parasite mimicry is treated here as a subclass of aggressive mimicry.

The mimic may have a particular significance for duped prey. One such case is

golden orb weaver (Nephila clavipes), which spins a conspicuous golden colored web in well-lit areas. Experiments show that bees are able to associate the webs with danger when the yellow pigment is not present, as occurs in less well-lit areas where the web is much harder to see. Other colours were also learned and avoided, but bees seemed least able to effectively associate yellow-pigmented webs with danger. Yellow is the colour of many nectar-bearing flowers, however, so perhaps avoiding yellow is not worthwhile. Another form of mimicry is based not on colour but pattern. Species such as the silver argiope (Argiope argentata) employ prominent patterns in the middle of their webs, such as zigzags. These may reflect ultraviolet light, and mimic the pattern seen in many flowers known as nectar guides. Spiders change their web day to day, which can be explained by the ability of bees to remember web patterns. Bees are able to associate a certain pattern with a spatial location, meaning the spider must spin a new pattern regularly or suffer diminishing prey capture.[61]

Another case is where males are lured towards what seems to be a

femmes fatales", and are subsequently captured and eaten. Female signals are based on that received from the male, each female having a repertoire of signals matching the delay and duration of the female of the corresponding species. This mimicry may have evolved from non-mating signals that have become modified for predation.[63]

Chlorobalius leucoviridis
), an acoustic aggressive mimic of cicadas

The listrosceline

Chlorobalius leucoviridis of inland Australia is capable of attracting male cicadas of the tribe Cicadettini by imitating the species-specific reply clicks of sexually receptive female cicadas. This example of acoustic aggressive mimicry is similar to the Photuris firefly case in that the predator's mimicry is remarkably versatile – playback experiments show that C. leucoviridis is able to attract males of many cicada species, including cicadettine cicadas from other continents, even though cicada mating signals are species-specific.[64]

Some carnivorous plants may also be able to increase their rate of capture through mimicry.[65]

Luring is not a necessary condition however, as the predator still has a significant advantage simply by not being identified as such. They may resemble a mutualistic

symbiont
or a species of little relevance to the prey.

Two bluestreak cleaner wrasse cleaning a potato grouper, Epinephelus tukula

A case of the latter situation is a species of

blenny, lives in the Indian Ocean—and not only looks like it in terms of size and coloration, but even mimics the cleaner's "dance". Having fooled its prey into letting its guard down, it then bites it, tearing off a piece of its fin before fleeing. Fish grazed on in this fashion soon learn to distinguish mimic from model, but because the similarity is close between the two they become much more cautious of the model as well, so both are affected. Due to victims' ability to discriminate between foe and helper, the blennies have evolved close similarity, right down to the regional level.[66]

Another interesting example that does not involve any luring is the zone-tailed hawk, which resembles the turkey vulture. It flies amongst the vultures, suddenly breaking from the formation and ambushing its prey.[67] Here the hawk's presence is of no evident significance to the vultures, affecting them neither negatively or positively.

Parasites

parasite: Cuckoo adult mimics sparrowhawk, alarming small birds enough to give female cuckoo time to lay eggs in their nests.[68]

Parasites can also be aggressive mimics, though the situation is somewhat different from those outlined previously. Some predators have a feature that draws prey; parasites can also mimic their hosts' natural prey, but are eaten themselves, a pathway into their host.

intermediate host, and must then find a suitable bird to mature in. Since the host birds do not eat snails, the sporocyst has another strategy to reach its host's intestine. They are brightly coloured and move in a pulsating fashion. A sporocyst-sac pulsates in the snail's eye stalks,[69][70] coming to resemble an irresistible meal for a songbird. In this way, it can bridge the gap between hosts, allowing it to complete its life cycle.[3] A nematode (Myrmeconema neotropicum) changes the colour of the abdomen of workers of the canopy ant Cephalotes atratus to make it appear like the ripe fruits of Hyeronima alchorneoides. It also changes the behaviour of the ant so that the gaster (rear part) is held raised. This presumably increases the chances of the ant being eaten by birds. The droppings of birds are collected by other ants and fed to their brood, thereby helping to spread the nematode.[71]

In an unusual case, planidium larvae of some beetles of the genus Meloe form a group and produce a pheromone that mimics the sex attractant of its host bee species. When a male bee arrives and attempts to mate with the mass of larvae, they climb onto his abdomen. From there, they transfer to a female bee, and from there to the bee nest to parasitize the bee larvae.[72]

reed warbler
.

Host-parasite mimicry is a two species system where a parasite mimics its own host.

Bombus) resemble their hosts more closely than would be expected by chance, at least in areas like Europe where parasite-host co-speciation is common. However, this is explainable as Müllerian mimicry, rather than requiring the parasite's coloration to deceive the host and thus constitute aggressive mimicry.[75]

Reproductive

Reproductive mimicry occurs when the actions of the dupe directly aid in the mimic's reproduction. This is common in plants with deceptive flowers that do not provide the reward they seem to offer and it may occur in Papua New Guinea fireflies, in which the signal of Pteroptyx effulgens is used by P. tarsalis to form aggregations to attract females.[76] Other forms of mimicry have a reproductive component, such as Vavilovian mimicry involving seeds, vocal mimicry in birds,[77][78][79] and aggressive and Batesian mimicry in brood parasite-host systems.[80]

Bakerian and Dodsonian

Bakerian mimicry, named after Herbert G. Baker,[81] is a form of automimicry where female flowers mimic male flowers of their own species, cheating pollinators out of a reward. This reproductive mimicry may not be readily apparent as members of the same species may still exhibit some degree of sexual dimorphism. It is common in many species of Caricaceae.[82]

Dodsonian mimicry, named after

lamellicorn beetle, which usually pollinates correspondingly colored Cistus flowers, is also known to aid in pollination of Ophrys species that are normally pollinated by bees.[85]

Pseudocopulation

Dasyscolia ciliata, a scoliid wasp, attempting to copulate with a flower of the orchid Ophrys speculum

Pseudocopulation occurs when a flower mimics a

olfaction that are most important, so this is at least partly chemical mimicry.[88]

Mimicry of rewards

Flowering plants, sometimes in conjunction with fungi, mimic rewards which attract insects.[89] Some "deceptive plants" imitate a pollinator's food source, with flower structures that resemble fruits.[90][91]

In a complex case, floral mimicry is induced by the

blueberries, causing them to secrete sugars, in effect mimicking the nectar of flowers. To the naked eye the leaves do not look like flowers, yet they still attract pollinating insects like bees using an ultraviolet signal. This case is unusual, in that the fungus benefits from the deception but it is the leaves that act as mimics, being harmed in the process. It is similar to host-parasite mimicry, but the host does not receive the signal. It has something in common with automimicry, but the plant does not benefit from the mimicry, and the action of the pathogen is required to produce it.[92]

Inter-sexual mimicry

Inter-sexual mimicry occurs when individuals of one sex in a species mimic members of the opposite sex to facilitate

isopod Paracerceis sculpta. Alpha males are the largest and guard a harem of females. Beta males mimic females and manage to enter the harem of females without being detected by the alpha males allowing them to mate. Gamma males are the smallest males and mimic juveniles. This also allows them to mate with the females without the alpha males detecting them.[93] Similarly, among common side-blotched lizards, some males mimic the yellow throat coloration and even mating rejection behaviour of the other sex to sneak matings with guarded females. These males look and behave like unreceptive females. This strategy is effective against "usurper" males with orange throats, but ineffective against blue throated "guarder" males, which chase them away.[94][95] Female spotted hyenas have pseudo-penises that make them look like males.[96]

Automimicry

Eyespots of foureye butterflyfish (Chaetodon capistratus) mimic its own eyes, deflecting attacks from the vulnerable head.

Automimicry or intraspecific mimicry occurs within a single species. One form of such mimicry is where one part of an organism's body resembles another part. For example, the tails of some snakes resemble their heads; they move backwards when threatened and present the predator with the tail, improving their chances of escape without fatal harm. Some fishes have eyespots near their tails, and when mildly alarmed swim slowly backwards, presenting the tail as a head. Some insects such as some lycaenid butterflies have tail patterns and appendages of various degrees of sophistication that promote attacks at the rear rather than at the head. Several species of pygmy owl bear "false eyes" on the back of the head, misleading predators into reacting as though they were the subject of an aggressive stare.[97]

Some writers use the term "automimicry" when the mimic imitates other morphs within the same species. For example, in a species where males mimic females or vice versa, this may be an instance of sexual mimicry in evolutionary game theory. Examples are found in some species of birds, fishes, and lizards.[98] Quite elaborate strategies along these lines are known, such as the well-known "scissors, paper, rock" mimicry in Uta stansburiana,[99] but there are qualitatively different examples in many other species, such as some Platysaurus.[100]

Many species of insects are toxic or distasteful when they have fed on certain plants that contain chemicals of particular classes, but not when they have fed on plants that lack those chemicals. For instance, some species of the

Danainae feed on various species of the Asclepiadoideae in the family Apocynaceae, which render them poisonous and emetic to most predators. Such insects frequently are aposematically coloured and patterned. When feeding on innocuous plants however, they are harmless and nutritious, but a bird that once has sampled a toxic specimen is unlikely to eat harmless specimens that have the same aposematic coloration. When regarded as mimicry of toxic members of the same species, this too may be seen as automimicry.[101]

Strymon melinus
) have a false head at the rear, held upwards at rest.

Many insects have filamentous "tails" at the ends of their wings and patterns of markings on the wings themselves. These combine to create a "false head". This misdirects predators such as birds and jumping spiders (

Salticidae). Spectacular examples occur in the hairstreak butterflies; when perching on a twig or flower, they commonly do so upside down and shift their rear wings repeatedly, causing antenna-like movements of the "tails" on their wings. Studies of rear-wing damage support the hypothesis that this strategy is effective in deflecting attacks from the insect's head.[102][103]

Evolution

It is widely accepted that mimicry evolves as a positive adaptation. The lepidopterist and novelist Vladimir Nabokov however argued that although natural selection might stabilize a "mimic" form, it would not be necessary to create it.[104]

The most widely accepted model used to explain the evolution of mimicry in butterflies is the two-step hypothesis. The first step involves

modifier genes that regulate a complex cluster of linked genes that cause large changes in morphology. The second step consists of selections on genes with smaller phenotypic effects, creating an increasingly close resemblance. This model is supported by empirical evidence that suggests that a few single point mutations cause large phenotypic effects, while numerous others produce smaller effects. Some regulatory elements collaborate to form a supergene for the development of butterfly color patterns. The model is supported by computational simulations of population genetics.[105] The Batesian mimicry in Papilio polytes is controlled by the doublesex gene.[106]

Some mimicry is imperfect. Natural selection drives mimicry only far enough to deceive predators. For example, when predators avoid a mimic that imperfectly resembles a coral snake, the mimic is sufficiently protected.[107][108][109]

Convergent evolution is an alternative explanation for why organisms such as coral reef fish[110][111] and benthic marine invertebrates such as sponges and nudibranchs have come to resemble each other.[112]

See also

Notes

References

  1. .
  2. ^ .
  3. ^ a b c d e f Wickler, Wolfgang (1968). Mimicry in plants and animals. McGraw-Hill.
  4. S2CID 37649827
    .
  5. ^ Radford, Benjamin; Frazier, Kendrick (January 2017). "Cheats and Deceits: How Animals and Plants Exploit and Mislead". Skeptical Inquirer. 41 (1): 60.
  6. ^ a b c d Ruxton, Graeme D.; Sherratt, T. N.; Speed, M. P. (2004). Avoiding Attack: the Evolutionary Ecology of Crypsis, Warning Signals, and Mimicry. Oxford University Press.
  7. S2CID 11436992
    .
  8. .
  9. ^ .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. ^ .
  17. .
  18. .
  19. ^ Wickler, Wolfgang, 1998. "Mimicry". Encyclopædia Britannica, 15th edition. Macropædia 24, 144–151. https://www.britannica.com/eb/article-11910
  20. .
  21. ^ Harper, Douglas. "Online Etymology Dictionary". Retrieved 23 February 2022.
  22. .
  23. .
  24. .
  25. .
  26. ^ Bates, Henry W. (1863). The naturalist on the river Amazons. Murray.
  27. .
  28. .
  29. ^ .
  30. .
  31. .
  32. .
  33. .
  34. ^ "Mimic Octopus, Thaumoctopus mimicus at MarineBio.org". Archived from the original on 18 July 2017. Retrieved 9 June 2007.
  35. ^ "Deceptive Woodpecker Uses Mimicry to Avoid Competition". AMNH. Retrieved 12 August 2015.
  36. PMID 24768053
    .
  37. .
  38. ^ Müller, Fritz (1878). "Ueber die Vortheile der Mimicry bei Schmetterlingen". Zoologischer Anzeiger. 1: 54–55.
  39. ^ Müller, F. (1879). "Ituna and Thyridia; a remarkable case of mimicry in butterflies". Proclamations of the Entomological Society of London. 1879. Translated by Meldola, R.: 20–29.
  40. ^ Flannery, T. F. (2007). "Community ecology: Mimicry complexes". Encyclopædia Britannica Online.
  41. PMID 28565050
    .
  42. .
  43. .
  44. . Viceroys are as unpalatable as monarchs, and significantly more unpalatable than queens from representative Florida populations.
  45. .
  46. .
  47. .
  48. ^ .
  49. ^ Mertens, Robert (1956). "Das Problem der Mimikry bei Korallenschlangen". Zool. Jahrb. Syst (in German). 84: 541–76.
  50. ^
    S2CID 83825414
    .
  51. ^ .
  52. ^ Wasmann, E. 1894. Kritisches Verzeichniss der myrmecophilin und termitophilen Arthropoden. Felix Dames, Berlin xi + 231 pp.
  53. ^ a b Vavilov, N. I. (1951). "The origin, variation, immunity and breeding of cultivated plants (translation by K. S. Chester)". Chronica Botanica. 13: 1–366.
  54. .
  55. .
  56. Brower, Lincoln P.
    (1970). "Plant poisons in a terrestrial food chain and implications for mimicry theory". In Chambers, K. L. (ed.). Biochemical Coevolution. Corvallis, Oregon, USA: Oregon State Univ. pp. 69–82.
  57. .
  58. ^ Bigot, L.; Jouventin, P. (1974). "Quelques expériences de comestibilité de Lépidoptères gabonais faites avec le mandrill, le cercocèbe à joues grises et le garde-bœufs". Terre Vie (in French). 28: 521–43.
  59. Ecology: Individuals, populations and communities
    (third edition) Blackwell Science, London
  60. JSTOR 1311924
    .
  61. ^ Craig, C. L. (1995). "Webs of Deceit". Natural History. 104 (3): 32–35.
  62. ^ Lloyd, J. E. (1965) Aggressive Mimicry in Photuris: Firefly Femmes Fatales Science 149:653–654.
  63. S2CID 26761854
    .
  64. .
  65. .
  66. .
  67. .
  68. .
  69. ^ See here for a photo.
  70. ^ Moore, J. (2002). Parasites and the behavior of animals. Oxford University Press.
  71. S2CID 23857167
    .
  72. .
  73. .
  74. . Retrieved 28 September 2013.
  75. .
  76. ^ Ohba, N.; Shimoyama, Ayu (2009). Meyer-Rochow, V. B. (ed.). Bioluminescence in Focus - a collection of illuminating essays. Research Signpost; Trivandrum, Kerala, India. pp. 229–242.
  77. S2CID 207101926
    .
  78. .
  79. .
  80. .
  81. ^ Baker, Herbert G. 1976. "Mistake" pollination as a reproductive system, with special reference to the Caricaceae. Pp 161–169 in J. Burley and B. T. Styles, eds. [clarification needed] Variation, breeding, and conservation of tropical trees. Academic Press, London, U.K.
  82. PMID 28568703
    .
  83. ^ Dodson, C. H.; Frymire, G. P. (1961). "Natural pollination of orchids". Missouri Botanical Garden Bulletin. 49: 133–39.
  84. PMID 28563205
    .
  85. ^ Kullenberg, B. (1961). "Studies in Ophrys pollination". Zool. Bidr. Uppsala. 34: 1–340.
  86. ^ Correvon H., Pouyanne M. (1916) Un curieux cas de mimetisme chez les Ophrydées. J. Soc. Nat. Hortic. Fr. 17: 29–31, 41–42, 84.
  87. ^ Pouyanne, M. (1917). "La fécondation des Ophrys par les insectes". Bull. Soc. Hist. Nat. Afr. Nord. 8: 1–2.
  88. ^ a b Van der Pijl, L., Dodson, C. H. (1966) Orchid Flowers; Their Pollination and Evolution. Coral Gables, Florida, USA, Univ. Miami Press.
  89. .
  90. .
  91. .
  92. ^ .
  93. .
  94. .
  95. .
  96. .
  97. ^ "Northern Pygmy Owl (Glaucidium californicum)". Owl Research Institute. Archived from the original on 28 December 2015. Retrieved 23 August 2015.
  98. .
  99. ^ Schell, Robert; Dettman, Jessica. "Ecology and breeding colors of the side-blotched lizard (Uta stansburiana) in the Grand Canyon" (PDF). Center for Watershed Sciences. University of California, Davis. Archived from the original (PDF) on 8 August 2014.
  100. ^ Lewis, Belinda Ann (2006). Sexual Selection and Signalling in the Lizard Platysaurus minor (PDF) (Masters thesis).
  101. PMID 17567561
    .
  102. ^ Sourakov, Andrei (2013): Two heads are better than one: false head allows Calycopis cecrops (Lycaenidae) to escape predation by a Jumping Spider, Phidippus pulcherrimus (Salticidae), Journal of Natural History, 47:15-16, 1047-1054
  103. ^ Robbins, Robert K. The "False Head" Hypothesis: Predation and Wing Pattern Variation of Lycaenid Butterflies. The American Naturalist Vol. 118, No. 5 (Nov., 1981), pp. 770-775
  104. S2CID 42675699
    .
  105. .
  106. .
  107. .
  108. .
  109. .
  110. .
  111. .
  112. .

Further reading

Children's

External links