Mudflat

Source: Wikipedia, the free encyclopedia.
longshore currents
) the tidal flats may directly pass into a shallow marine environment.

Mudflats or mud flats, also known as tidal flats or, in Ireland, slob or slobs,

estuarine silts, clays and aquatic animal detritus. Most of the sediment within a mudflat is within the intertidal zone
, and thus the flat is submerged and exposed approximately twice daily.

A recent global remote sensing analysis estimated that approximately 50% of the global extent of tidal flats occurs within eight countries (Indonesia, China, Australia, United States, Canada, India, Brazil, and Myanmar) and that 44% of the world's tidal flats occur within Asia (56,051 km2 or 21,641 sq mi).[3] A 2022 analysis of tidal wetland losses and gains estimates that global tidal flats experienced losses of 7,000 km2 (2,700 sq mi) between 1999 and 2019, which were largely offset by global gains of 6,700 km2 (2,600 sq mi) over the same time period.[5]

In the past tidal flats were considered unhealthy, economically unimportant areas and were often dredged and developed into agricultural land.[6] Some mudflats can be extremely treacherous to walk on. For example, the mudflats surrounding Anchorage, Alaska, are made from fine glacial-silt which does not easily separate out its water, and, although seemingly solid, can quickly gel and become like quicksand when disturbed by stepping on it. Four people are known to have become stuck up to their waists and drowned when the tide came in, and many others are rescued from the Anchorage mudflats each year.[7]

On the Baltic Sea coast of Germany in places, mudflats are exposed not by tidal action, but by wind-action driving water away from the shallows into the sea. This kind of wind-affected mudflat is called Windwatt in German.[citation needed]

Ecology

Stewart Island, New Zealand

Tidal flats, along with intertidal

Biodiversity Action Plan
priority habitat.

The maintenance of mudflats is important in preventing coastal erosion. However, mudflats worldwide are under threat from predicted

dredging due to shipping purposes, and chemical pollution.[3] In some parts of the world, such as East and South-East Asia, mudflats have been reclaimed for aquaculture, agriculture, and industrial development. For example, around the Yellow Sea region of East Asia, more than 65% of mudflats present in the early 1950s had been destroyed by the late 2000s.[12][13] It is estimated that up to 16% of the world tidal flats have disappeared since the mid-1980s.[3]

Mudflat sediment deposits are focused into the intertidal zone which is composed of a barren zone and marshes. Within these areas are various ratios of sand and mud that make up the sedimentary layers.[14] The associated growth of coastal sediment deposits can be attributed to rates of subsidence along with rates of deposition (example: silt transported via river) and changes in sea level.[14]

Barren zones extend from the lowest portion of the intertidal zone to the marsh areas. Beginning in close proximity to the tidal bars, sand dominated layers are prominent and become increasingly muddy throughout the tidal channels. Common bedding types include laminated sand, ripple bedding, and bay mud. Bioturbation also has a strong presence in barren zones.

Marshes contain an abundance of herbaceous plants while the sediment layers consist of thin sand and mud layers. Mudcracks are a common as well as wavy bedding planes.[14] Marshes are also the origins of coal/peat layers because of the abundant decaying plant life.[14]

Satellite view of the Kneiss Islands, Tunisia
Satellite view of the Kneiss Islands, Tunisia.

Salt pans can be distinguished in that they contain thinly laminated layers of clayey silt. The main source of the silt comes from rivers. Dried up mud along with wind erosion forms silt dunes. When flooding, rain or tides come in, the dried sediment is then re-distributed.[14]

Mudflats in Brewster, Massachusetts, United States, extending hundreds of yards offshore at the low tide. The line of wrack and seashells in the foreground indicates the high-water mark.
Gulls feeding on mudflats in Skagit Bay, Washington, United States

Selected example areas

See also

  • Herringbone cross beds

References

  1. ^ "Sloblands". www.askaboutireland.ie.
  2. ^ Roche, Richard. "Celebrating the Slobs". The Irish Times.
  3. ^ a b c d Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. (2019), "The global distribution and trajectory of tidal flats", Nature, 565 (7738): 222–225,
    S2CID 56481043
    /
  4. ^ Swamps and marshes (with thick and deep mud beneath surfaces in hot season) are either freshwater, salty, or brackish.
  5. S2CID 248749118
    .
  6. ^ "Dredging Indian River Lagoon Wetlands 1920 - 1950s". Archived from the original on 2013-03-20. Retrieved 2011-10-28.
  7. ^ Associated Press - Man dies on Alaskan Mudflat
  8. ^ "Indian River Lagoon Species Inventory Home". irlspecies.org.
  9. ^ Aldea, K. (2022). The Unvegetated Tidal Flats in Catanduanes Island, Philippines: Current and Future Trends. In T. Shinbo, S. Akama & S. Kubota (Eds.), " Interdisciplinary Studies for Integrated Coastal Zone Management in the Region along the Kuroshio: Problem-Based Approach by Kuroshio Science" (pp.76-82).https://kochi.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=8635&item_no=1&page_id=13&block_id=21
  10. ^ Triño, A. T., & Rodriguez, E. M. (2000). Mud crab (Scylla serrata) culture in tidal flats with existing mangroves. In J. H. Primavera, M. T. Castaños, & M. B. Surtida (Eds.), Mangrove-Friendly Aquaculture: Proceedings of the Workshop on Mangrove-Friendly Aquaculture organized by the SEAFDEC Aquaculture Department, January 11–15, 1999, Iloilo City, Philippines (pp. 171–176). Aquaculture Department, Southeast Asian Fisheries Development Center. https://repository.seafdec.org.ph/handle/10862/454
  11. ^ "Manko - Tidal Flat, Mangrove Forest" (PDF).
  12. ISBN 9782831712550, archived from the original
    on 2014-06-24, retrieved 2014-08-01
  13. ^ Murray, N.J.; Clemens, R.S.; Phinn, S.R.; Possingham, H.P.; Fuller, R.A. (2014), "Tracking the rapid loss of tidal wetlands in the Yellow Sea" (PDF), Frontiers in Ecology and the Environment, 12 (5): 267–272, /
  14. ^ .

External links