Mutagen

Source: Wikipedia, the free encyclopedia.
(Redirected from
Mutagenicity
)
international pictogram for chemicals that are sensitising, mutagenic, carcinogenic or toxic to reproduction

In genetics, a mutagen is a physical or chemical agent that permanently changes genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can cause cancer in animals, such mutagens can therefore be carcinogens, although not all necessarily are. All mutagens have characteristic mutational signatures with some chemicals becoming mutagenic through cellular processes.

The process of DNA becoming modified is called

errors in DNA replication, repair and recombination
.

Discovery

The first mutagens to be identified were

John Hill made the first direct link of cancer to chemical substances by noting that excessive use of snuff may cause nasal cancer.[3] In 1775, Sir Percivall Pott wrote a paper on the high incidence of scrotal cancer in chimney sweeps, and suggested chimney soot as the cause of scrotal cancer.[4] In 1915, Yamagawa and Ichikawa showed that repeated application of coal tar to rabbit's ears produced malignant cancer.[5] Subsequently, in the 1930s the carcinogen component in coal tar was identified as a polyaromatic hydrocarbon (PAH), benzo[a]pyrene.[2][6]
Polyaromatic hydrocarbons are also present in soot, which was suggested to be a causative agent of cancer over 150 years earlier.

The association of exposure to radiation and cancer had been observed as early as 1902, six years after the discovery of X-ray by

better source needed] Similar work by Lewis Stadler also showed the mutational effect of X-rays on barley in 1928,[16] and ultraviolet (UV) radiation on maize in 1936.[17] The effect of sunlight had previously been noted in the nineteenth century where rural outdoor workers and sailors were found to be more prone to skin cancer.[18]

Chemical mutagens were not demonstrated to cause mutation until the 1940s, when Charlotte Auerbach and J. M. Robson found that mustard gas can cause mutations in fruit flies.[19] A large number of chemical mutagens have since been identified, especially after the development of the Ames test in the 1970s by Bruce Ames that screens for mutagens and allows for preliminary identification of carcinogens.[20][21] Early studies by Ames showed around 90% of known carcinogens can be identified in Ames test as mutagenic (later studies however gave lower figures),[22][23][24] and ~80% of the mutagens identified through Ames test may also be carcinogens.[24][25]

Difference between mutagens and carcinogens

Mutagens are not necessarily carcinogens, and vice versa.

tumour promotion, immunosuppression that reduces the ability to fight cancer cells or pathogens that can cause cancer, disruption of the endocrine system (e.g. in breast cancer), tissue-specific toxicity, and inflammation (e.g. in colorectal cancer).[29]

Difference between mutagens and DNA damaging agents

A DNA damaging agent is an agent that causes a change in the structure of DNA that is not itself replicated when the DNA is replicated.[30] Examples of DNA damage include a chemical addition or disruption of a nucleotide base in DNA (generating an abnormal nucleotide or nucleotide fragment), or a break in one or both strands in DNA. When duplex DNA containing a damaged base is replicated, an incorrect base may be inserted in the newly synthesized strand opposite the damaged base in the complementary template strand, and this can become a mutation in the next round of replication. Also a DNA double-strand break may be repaired by an inaccurate process leading to an altered base pair, a mutation. However, mutations and DNA damages differ in a fundamental way: mutations can, in principle, be replicated when DNA replicates, whereas DNA damages are not replicated. Thus DNA damaging agents often cause mutations as a secondary consequence, but not all DNA damages lead to mutation and not all mutations arise from a DNA damage.[30] The term genotoxic means toxic (damaging) to DNA.

Effects

Mutagens can cause changes to the DNA and are therefore genotoxic. They can affect the transcription and replication of the DNA, which in severe cases can lead to cell death. The mutagen produces mutations in the DNA, and deleterious mutation can result in aberrant, impaired or loss of function for a particular gene, and accumulation of mutations may lead to cancer. Mutagens may therefore be also carcinogens. However, some mutagens exert their mutagenic effect through their metabolites, and therefore whether such mutagens actually become carcinogenic may be dependent on the metabolic processes of an organism, and a compound shown to be mutagenic in one organism may not necessarily be carcinogenic in another.[31]

Different mutagens act on DNA differently. Powerful mutagens may result in chromosomal instability,[32] causing chromosomal breakages and rearrangement of the chromosomes such as translocation, deletion, and inversion. Such mutagens are called clastogens.

Mutagens may also modify the DNA sequence; the changes in

codons.[33]
Some mutagens can cause aneuploidy and change the number of chromosomes in the cell. They are known as aneuploidogens.[34]

In Ames test, where the varying concentrations of the chemical are used in the test, the dose response curve obtained is nearly always linear, suggesting that there may be no threshold for mutagenesis. Similar results are also obtained in studies with radiations, indicating that there may be no safe threshold for mutagens. However, the no-threshold model is disputed with some arguing for a dose rate dependent threshold for mutagenesis.[35][10] Some have proposed that low level of some mutagens may stimulate the DNA repair processes and therefore may not necessarily be harmful. More recent approaches with sensitive analytical methods have shown that there may be non-linear or bilinear dose-responses for genotoxic effects, and that the activation of DNA repair pathways can prevent the occurrence of mutation arising from a low dose of mutagen.[36]

Types

Mutagens may be of physical, chemical or biological origin. They may act directly on the DNA, causing direct damage to the DNA, and most often result in replication error. Some however may act on the replication mechanism and chromosomal partition. Many mutagens are not mutagenic by themselves, but can form mutagenic metabolites through cellular processes, for example through the activity of the cytochrome P450 system and other oxygenases such as cyclooxygenase.[37] Such mutagens are called promutagens.[38]

Physical mutagens

  • cesium-137
    .
  • pyrimidine dimers
    , which can cause error in replication if left uncorrected.
  • Radioactive decay, such as 14C in DNA which decays into nitrogen.

Chemical mutagens

A DNA adduct (at center) of the mutagenic metabolite of benzo[a]pyrene from tobacco smoke

Chemical mutagens either directly or indirectly damage DNA. On this basis, they are of 2 types:

Directly acting chemical mutagens

They directly damage DNA, but may or may not undergo metabolism to produce promutagens (metabolites that can have higher mutagenic potential than their substrates).

Indirectly acting chemical mutagens

They are not necessarily mutagenic by themselves, but they produce promutagens mutagenic compounds through metabolic processes in cells.

Base analogs

  • Base analog, which can substitute for DNA bases during replication and cause transition mutations. Some examples are 5-bromouracil and 2-aminopurine
    .

Intercalating agents

Metals

Many metals, such as arsenic, cadmium, chromium, nickel and their compounds may be mutagenic, but they may act, however, via a number of different mechanisms.[45] Arsenic, chromium, iron, and nickel may be associated with the production of ROS, and some of these may also alter the fidelity of DNA replication. Nickel may also be linked to DNA hypermethylation and histone deacetylation, while some metals such as cobalt, arsenic, nickel and cadmium may also affect DNA repair processes such as DNA mismatch repair, and base and nucleotide excision repair.[46]

Biological agents

  • Transposons
    , a section of DNA that undergoes autonomous fragment relocation/multiplication. Its insertion into chromosomal DNA disrupts functional elements of the genes.
  • Peyton Rous who discovered the Rous sarcoma virus.[48]
  • Bacteria – some bacteria such as Helicobacter pylori cause inflammation during which oxidative species are produced, causing DNA damage and reducing efficiency of DNA repair systems, thereby increasing mutation.

Protection

Antioxidants

N-nitroso compounds (nitrosamine). Flavonoids, such as EGCG in green tea, have also been shown to be effective antioxidants and may have anti-cancer properties. Epidemiological studies indicate that a diet rich in fruits and vegetables is associated with lower incidence of some cancers and longer life expectancy,[50] however, the effectiveness of antioxidant supplements in cancer prevention in general is still the subject of some debate.[50][51]

Other chemicals may reduce mutagenesis or prevent cancer via other mechanisms, although for some the precise mechanism for their protective property may not be certain. Selenium, which is present as a micronutrient in vegetables, is a component of important antioxidant enzymes such as gluthathione peroxidase. Many phytonutrients may counter the effect of mutagens; for example, sulforaphane in vegetables such as broccoli has been shown to be protective against prostate cancer.[52] Others that may be effective against cancer include indole-3-carbinol from cruciferous vegetables and resveratrol from red wine.[53]

An effective precautionary measure an individual can undertake to protect themselves is by limiting exposure to mutagens such as UV radiations and tobacco smoke. In Australia, where people with pale skin are often exposed to strong sunlight, melanoma is the most common cancer diagnosed in people aged 15–44 years.[54][55]

In 1981, human epidemiological analysis by

cured meat such as bacon (ascorbate, which is added to cured meat, however, reduces nitrosamine formation).[49] Overly-browned starchy food such as bread, biscuits and potatoes can generate acrylamide, a chemical shown to cause cancer in animal studies.[59][60] Excessive alcohol consumption has also been linked to cancer; the possible mechanisms for its carcinogenicity include formation of the possible mutagen acetaldehyde, and the induction of the cytochrome P450 system which is known to produce mutagenic compounds from promutagens.[61]

For certain mutagens, such as dangerous chemicals and radioactive materials, as well as infectious agents known to cause cancer, government legislations and regulatory bodies are necessary for their control.[62]

Test systems

Many different systems for detecting mutagen have been developed.[63][64] Animal systems may more accurately reflect the metabolism of human, however, they are expensive and time-consuming (may take around three years to complete), they are therefore not used as a first screen for mutagenicity or carcinogenicity.

Bacterial

Yeast

Systems similar to Ames test have been developed in yeast. Saccharomyces cerevisiae is generally used. These systems can check for forward and reverse mutations, as well as recombinant events.

Drosophila

Sex-Linked Recessive Lethal Test – Males from a strain with yellow bodies are used in this test. The gene for the yellow body lies on the X-chromosome. The fruit flies are fed on a diet of test chemical, and progenies are separated by sex. The surviving males are crossed with the females of the same generation, and if no males with yellow bodies are detected in the second generation, it would indicate a lethal mutation on the X-chromosome has occurred.

Plant assays

Plants such as

have been used in various test assays for mutagenecity of chemicals.

Cell culture assay

Mammalian cell lines such as Chinese hamster V79 cells,

-resistance (OUA) assay.

Rat primary hepatocytes may also be used to measure DNA repair following DNA damage. Mutagens may stimulate unscheduled DNA synthesis that results in more stained nuclear material in cells following exposure to mutagens.

Chromosome check systems

These systems check for large scale changes to the chromosomes and may be used with cell culture or in animal test. The chromosomes are stained and observed for any changes. Sister chromatid exchange is a symmetrical exchange of chromosome material between sister chromatids and may be correlated to the mutagenic or carcinogenic potential of a chemical. In micronucleus Test, cells are examined for micronuclei, which are fragments or chromosomes left behind at anaphase, and is therefore a test for clastogenic agents that cause chromosome breakages. Other tests may check for various chromosomal aberrations such as chromatid and chromosomal gaps and deletions, translocations, and ploidy.

Animal test systems

Rodents are usually used in animal test
. The chemicals under test are usually administered in the food and in the drinking water, but sometimes by dermal application, by gavage, or by inhalation, and carried out over the major part of the life span for rodents. In tests that check for carcinogens, maximum tolerated dosage is first determined, then a range of doses are given to around 50 animals throughout the notional lifespan of the animal of two years. After death the animals are examined for sign of tumours. Differences in metabolism between rat and human however means that human may not respond in exactly the same way to mutagen, and dosages that produce tumours on the animal test may also be unreasonably high for a human, i.e. the equivalent amount required to produce tumours in human may far exceed what a person might encounter in real life.

Mice with recessive mutations for a visible phenotype may also be used to check for mutagens. Females with recessive mutation crossed with wild-type males would yield the same phenotype as the wild-type, and any observable change to the phenotype would indicate that a mutation induced by the mutagen has occurred.

Mice may also be used for dominant lethal assays where early embryonic deaths are monitored. Male mice are treated with chemicals under test, mated with females, and the females are then sacrificed before parturition and early fetal deaths are counted in the uterine horns.

blue-white screen
, the plaque formed with DNA containing mutation are white, while those without are blue.

In anti-cancer therapy

Many mutagens are highly toxic to proliferating cells, and they are often used to destroy cancer cells. Alkylating agents such as cyclophosphamide and cisplatin, as well as intercalating agent such as daunorubicin and doxorubicin may be used in chemotherapy. However, due to their effect on other cells which are also rapidly dividing, they may have side effects such as hair loss and nausea. Research on better targeted therapies may reduce such side-effects. Ionizing radiations are used in radiation therapy.

In fiction

In

. In the "nuclear monster" films of the 1950s, nuclear radiation mutates humans and common insects often to enormous size and aggression; these films include .

See also

References

  1. PMID 20049643
    .
  2. ^ a b Luch, A. "Nature and Nurture - Lessons from Chemical Carcinogenesis: Chemical Carcinogens — From Past to Present". www.medscape.com. Archived from the original on 19 March 2011.
  3. ^ Hill J (1761). Cautions against the immoderate use of snuff: founded on the known qualities of the tobacco plant: and the effects it must produce when this way taken into the body: and enforced by instances of persons who have perished miserably of diseases, occasioned, or rendered incurable by its use. London: Printed for Baldwin R and Jackson J.
  4. PMID 13396156
    .
  5. .
  6. .
  7. ^ Kathren RL (Dec 2002). "Historical Development of the Linear Nonthreshold Dose-Response Model as Applied to Radiation". University of New Hampshire Law Review. 1 (1).
  8. ^ ""Russian Trail" in the Discovery of DNA Structure". SCIENCE First Hand. Vol. 3, no. N2. INFOLIO. 2004. Archived from the original on 18 August 2017.
  9. . Bereits kurz nach der Entdeckung der Möglichkeit einer Auslösung von Mutationen durch ionisierende Strahlen (Nadson u. Filippov 1925, 1928; Muller 1927)
  10. ^ (PDF) from the original on 2 August 2017.
  11. (PDF) from the original on 30 October 2012.
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. from the original on 17 November 2011.
  19. .
  20. .
  21. .
  22. .
  23. PMID 3285186. Archived from the original
    (PDF) on 30 October 2012.
  24. ^ .
  25. .
  26. ^ "Toxicology And Carcinogenesis Studies Of Sodium Azide in F344/N Rats" (PDF). nih.gov (technical report). NIH. 1991. Archived (PDF) from the original on 23 October 2011.
  27. .
  28. .
  29. .
  30. ^
  31. .
  32. .
  33. ^ Durland, Justin; Ahmadian-Moghadam, Hamid (19 September 2022). "Genetics, Mutagenesis". StatPearls. 2023 Jan. Retrieved 18 November 2023.
  34. PMID 11013390
    .
  35. ^ "Calabrese says mistake led to adopting the LNT model in toxicology". phys.org. 2017. Archived from the original on 1 August 2017. Retrieved 24 Jan 2019. Calabrese says mistake led to adopting the LNT model in toxicology.{{cite web}}: CS1 maint: postscript (link)
  36. PMID 27036068
    .
  37. .
  38. ^ "Promutagen - an overview | ScienceDirect Topics".
  39. PMID 15964853
    .
  40. ISSN 0378-6080. {{cite book}}: |journal= ignored (help
    )
  41. .
  42. .
  43. .
  44. .
  45. (PDF) from the original on 24 August 2015.
  46. ^ "Health Risk Assessment Guidance for Metals – Mutagenicity" (PDF). EBRC. 2007. Archived from the original (PDF) on 12 April 2012.
  47. ^ Ellermann V.; Bang O. (1908). "Experimentelle Leukämie bei Hühnern". Zentralbl. Bakteriol. Parasitenkd. Infectionskr. Hyg. Abt. Orig. 46: 595–609.
  48. PMID 19867421
    .
  49. ^ .
  50. ^ .
  51. .
  52. .
  53. .
  54. ^ "Skin Cancer Facts and Figures". Cancer Council. Archived from the original on 10 August 2012. Retrieved 2 Jul 2010.
  55. ^ Callaway, E (2008). "Skin-tone gene could predict cancer risk". New Scientist. Archived from the original on 24 April 2015. Retrieved 24 Jan 2019.
  56. PMID 7017215
    .
  57. .
  58. ^ Scientific Committee on Food (4 Dec 2002). "Polycyclic Aromatic Hydrocarbons – Occurrence in foods, dietary exposure and health effects" (PDF). European Commission. Archived from the original (PDF) on 19 May 2011. Retrieved 21 Aug 2010.
  59. ^ Siddique, Haroon (23 Jan 2017). "Roast potatoes and toast that's a bit too brown may cause cancer, say authorities". The Guardian. Archived from the original on 23 January 2017.
  60. PMID 12166997
    .
  61. .
  62. .
  63. .
  64. .