Mycetozoa

Source: Wikipedia, the free encyclopedia.

Mycetozoa
Aethalium of a slime mold (Fuligo septica)
Scientific classification Edit this classification
Domain: Eukaryota
Phylum: Amoebozoa
Subphylum: Conosa
Infraphylum: Mycetozoa
de Bary, 1873
Classes and orders
  • Protostelia
  • Protosteliida
  • Liceida
  • Echinosteliida
  • Trichiida
  • Stemonitida
  • Physarales
  • Dictyostelia
  • Dictyosteliida
Synonyms
  • Eumycetozoa Zopf, 1884, emend. Olive, 1975
  • Myxomycota sensu Whittaker, 1969[1]

Mycetozoa is a polyphyletic grouping of slime molds.[2] It was originally thought to be a monophyletic clade, but recently it was discovered that protostelia are a polyphyletic group within Conosa.[3]

Classification

It can be divided into dictyostelid, myxogastrid, and protostelid groups.[4]

The mycetozoan groups all fit into the

opisthokonts
).

Utility in research

The

multicellular organisms
develop.

Physarum polycephalum are useful for studying cytoplasmic streaming. They have also been used to study the biochemical events that surround mitosis, since all of the nuclei in a medium-sized plasmodium divide in synchrony. It has been observed that they can find their way through mazes by spreading out and choosing the shortest path, an interesting example of information processing without a nervous system. Myxomycete plasmodia have also been used to study the genetics of asexual cell fusion. The giant size of the plasmodial cells allows for easy evaluation of complete or partial cell fusion.

In 2006, researchers at the University of Southampton and the University of Kobe reported that they had built a six-legged robot whose movement was remotely controlled by a Physarum slime mold.[5] The mold directed the robot into a dark corner most similar to its natural habitat.

Slime molds are sometimes studied in advanced mathematics courses. Slime mold aggregation is a natural process that can be approximated with

partial differential equations.[citation needed
]

Meiosis

Members of the Mycetozoa group are able to undergo sexual reproduction either by heterothallic or homothallic mating.[6][7][8] An analysis of meiosis-related genes in the Dictyostelium discoideum genome revealed that 36 of the 44 genes tested were present in the genome.[9] One gene, Spo11, was absent in the Mycetozoa, raising questions about the assumed universal role of Spo11 as an initiator of meiosis.[9]

References

External links