Mycoplasma

Source: Wikipedia, the free encyclopedia.

Mycoplasma
Mycoplasma haemofelis
Scientific classification Edit this classification
Domain: Bacteria
Phylum: Mycoplasmatota
Class: Mollicutes
Order: Mycoplasmatales
Family: Mycoplasmataceae
Genus: Mycoplasma
J.Nowak 1929
Type species
Mycoplasma mycoides
(Borrel et al. 1910) Freundt 1955 (Approved Lists 1980)
Species

See text

Synonyms
  • "Asterococcus" Borrel et al. 1910 non Scherffel 1908 non Borkhsenius 1960
  • "Asteromyces" Wroblewski 1931 non Moreau & Moreau ex Hennebert 1962
  • "Borrelomyces" Turner 1935
  • "Bovimyces" Sabin 1941
  • Haemobartonella Tyzzer & Weinman 1939
  • "Pleuropneumonia" Tulasne & Brisou 1955
Mycoplasmosis
Infectious disease

Mycoplasma is a genus of

coccoid. Hundreds of Mycoplasma species infect animals.[3]

In casual speech, the name "mycoplasma" (plural mycoplasmas or mycoplasms) generally refers to all members of the

order Mycoplasmatales
(see "scientific classification").

Etymology

The term "mycoplasma", from the Greek μύκης, mykes (fungus) and πλάσμα, plasma (formed), was first used by Albert Bernhard Frank in 1889 to describe an altered state of plant cell cytoplasm resulting from infiltration by fungus-like microorganisms.[4][5] Julian Nowak later proposed the name mycoplasma for certain filamentous microorganisms imagined to have both cellular and acellular stages in their lifecycles, which could explain how they were visible with a microscope, but passed through filters impermeable to other bacteria.[6] Later, the name for these mycoplasmas was pleuropneumonia-like organisms (PPLO), broadly referring to organisms similar in colonial morphology and filterability to the causative agent (a Mycoplasma species) of contagious bovine pleuropneumonia.[7] At present, all these organisms are classified as Mollicutes, and the term Mycoplasma solely refers to the genus.[citation needed]

Species that infect humans

Species of Mycoplasma, other than those listed below, have been recovered from humans, but are assumed to have been contracted from a non-human host. The following species use humans as the primary host:[citation needed]

Pathophysiology

Mycoplasma species have been isolated from women with

spontaneous abortion.[10] Mycoplasma genitalium has developed resistance to some antibiotics.[11] Mycoplasma species are associated with infant respiratory distress syndrome, bronchopulmonary dysplasia, and intraventricular hemorrhage in preterm infants.[3]

Characteristics

Over 100 species have been included in the genus Mycoplasma, a member of the class

commensals of humans, animals, and plants. The genus Mycoplasma uses vertebrate and arthropod hosts.[12] Dietary nitrogen availability has been shown to alter codon bias and genome evolution in Mycoplasma and Phytoplasma.[13]

Mycoplasma species are among the smallest free-living organisms (about 0.2 - 0.3 µm in diameter).[14][15] They have been found in the pleural cavities of cattle suffering from pleuropneumonia. These organisms are often called MLO (mycoplasma-like organisms) or, formerly, PPLO (pleuropneumonia-like organisms).[7]

Important characteristics of Mycoplasma species

  1. Cell wall is absent and plasma membrane forms the outer boundary of the cell.
  2. Due to the absence of cell walls these organisms can change their shape and leads to pleomorphism.
  3. Lack of nucleus and other membrane-bound organelles.
  4. Genetic material is a single DNA duplex and is naked.
  5. Ribosomes are 70S type.
  6. Possess a replicating disc at one end which assists replication process and also the separation of the genetic materials.
  7. Heterotrophic nutrition. Some live as saprophytes but the majority are parasites of plants and animals. The parasitic nature is due to the inability of mycoplasmal bacteria to synthesise the required growth factor.

Cell and colony morphology

Due to the lack of a rigid cell wall, Mycoplasma species (like all Mollicutes) can contort into a broad range of shapes, from round to oblong. They are

spirochetes.[16]

Colony morphology of Mycoplasma on Hayflick agar

Colonies show the typical "fried egg" appearance (about 0.5 mm in diameter).[15]

Reproduction

In 1954, using phase-contrast microscopy, continual observations of live cells have shown that Mycoplasma species ("mycoplasmas", formerly called pleuropneumonia-like organisms, PPLO, now classified as Mollicutes) and L-form bacteria (previously also called L-phase bacteria) do not proliferate by binary fission, but by a uni- or multi-polar budding mechanism. Microphotograph series of growing microcultures of different strains of PPLOs, L-form bacteria and, as a control, a Micrococcus species (dividing by binary fission) have been presented.[15]  Additionally, electron microscopic studies have been performed.[17]

Taxonomy

History of taxonomy

Previously, Mycoplasma species (often commonly called "mycoplasmas", now classified as

phylogenetic analysis has identified them as bacteria that have lost their cell walls in the course of evolution.[18]

The medical and agricultural importance of members of the genus Mycoplasma and related genera have led to the extensive cataloging of many of these organisms by culture, serology, and small sub-unit rRNA gene and whole-genome sequencing. A recent focus in the sub-discipline of molecular phylogenetics has both clarified and confused certain aspects of the organization of the class Mollicutes.[19]

Originally, the trivial name "mycoplasmas" commonly denoted all members of the class Mollicutes (from Latin mollis "soft" and cutis "skin"), which lack cell walls due to their genetic inability to synthesize peptidoglycan.

Tenericutes.[20]

Historical approach to genera

Historically, the description of a bacterium lacking a cell wall was sufficient to classify it to the genus Mycoplasma and as such it is the oldest and largest genus of the class with about half of the class' species (107 validly described), each usually limited to a specific host and with many hosts harboring more than one species, some pathogenic and some commensal. In later studies, many of these species were found to be phylogenetically distributed among at least three separate orders. A limiting criterion for inclusion within the genus Mycoplasma was that the organism has a vertebrate host.

By the 1990s, it had become readily apparent that this approach was problematic: the

International Committee on Systematic Bacteriology's (ICSB) subcommittee on Mollicutes between 1992 and 2011, to no effect.[21]

Regardless of taxonomy, by 2007 it is solidly known that Molicutes can be divided into four nontaxonomic lineages.[22][23]

Current taxonomy (Gupta)

In 2018, Gupta et al. re-circumscribed the genus Mycoplasma around M. mycoides. A total of 78 species was removed from Mycoplasma, creating five new genera and a number of higher taxonomic levels. Under this new scheme, a new family

Mycoplasmatales of Mycoplasma.[23] The taxonomy was accepted by the ICSB with validation list 184 in 2018 and became the correct name. Both List of Prokaryotic names with Standing in Nomenclature (LPSN)[21] and National Center for Biotechnology Information (NCBI) now use the new nomenclature.[24]

Gupta's proposed taxonomy, as expected, moved the medically important "pneumoniae" group out of Mycoplasma into its own genus. As a result, a number of mycoplasmologists petitioned to the ICSB to reject the name in 2019. They argue that although Gupta's phylogenetic methods were likely solid, the proposed name changes are too sweeping to be practically adopted, citing some principles of the Code such as "name stability".[25] Gupta and Oren wrote a rebuttal in 2020, further detailing the pre-existing taxonomic problems.[26][27] In 2022, the ICSP's Judicial Opinion 122 ruled in favor of the name changes proposed by Gupta, meaning they remain valid under the Prokaryotic Code[28] (and for the purpose of the LPSN, they remain the "correct names").[27] However, the older names also remain valid; their use remains acceptable under the Code.[28]

Gupta et al. 2019 performed some uncontroversial sorting of the order Mycoplasmatales.[29]

16S rRNA based
LTP_08_2023[30][31][32]
120 marker proteins based GTDB 08-RS214[33][34][35]
Mycoplasma s.s.

M. putrefaciens Tully et al. 1974

M. cottewii Da Massa et al. 1994

M. yeatsii Da Massa et al. 1994

M. capri (Edward 1953) Hudson, Cottew & Adler 1967 non El Nasri 1966

M. mycoides (Borrel et al. 1910) Freundt 1955

M. capricolum Tully et al. 1974

M. capricolum capripneumoniae Leach, Erno & MacOwan 1993

M. leachii Manso-Silván et al. 2009

Mycoplasma s.s.

M. putrefaciens

M. cottewii

M. yeatsii

M. feriruminatoris Fischer et al. 2015[36]

M. capri

M. mycoides

M. capricolum

M. leachii

Unassigned species:

  • "Ca. M. aoti" Barker et al. 2011
  • "M. bradburyae" Ramírez et al. 2023
  • "Ca. M. corallicola" Neulinger et al. 2009
  • "Ca. M. coregoni" corrig. Rasmussen et al. 2021
  • "Ca. M. didelphidis" corrig. Pontarolo et al. 2021
  • "Ca. M. erythrocervae" Watanabe et al. 2010
  • "Ca. M. haematocervi" corrig. Watanabe et al. 2010
  • "Ca. M. haematodidelphidis" corrig. Messick et al. 2002
  • "Ca. M. haematohydrochoeri" corrig. Vieira et al. 2021
  • "Ca. M. haematomacacae" corrig. Maggi et al. 2013
  • "Ca. M. haematominiopteri" corrig. Millán et al. 2015
  • "M. haematomyotis" Volokhov et al. 2023
  • "M. haematophyllostomi" Volokhov et al. 2023
  • "Ca. M. haematonasuae" corrig. Collere et al. 2021
  • "Ca. M. haematoparvum" Sykes et al. 2005
  • "Ca. M. haematosphigguri" corrig. Valente et al. 2021
  • "Ca. M. haematotapirus" Mongruel et al. 2022
  • "Ca. M. haematoterrestris" Mongruel et al. 2022
  • "Ca. M. haematovis" corrig. Hornok et al. 2009
  • "Ca. M. haemoalbiventris" Pontarolo et al. 2021
  • "Ca. M. haemobovis" Meli et al. 2010
  • "Ca. M. haemomeles" Harasawa, Orusa & Giangaspero 2014
  • "Ca. M. haemomuris" (Mayer 1921) Neimark et al. 2002
  • "Ca. M. haemoparvum" Kenny et al. 2004
  • M. hafezii Ziegler et al. 2019
  • "M. incognitus" Lo et al. 1989
  • "M. insons" May et al. 2007
  • "Ca. M. kahanei" Neimark et al. 2002
  • "Ca. M. mahonii" Aroh, Liles & Halanych 2023
  • "M. monodon" Ghadersohi & Owens 1998
  • M. phocimorsus Skafte-Holm et al. 2023
  • "M. pneumophila" Lyerova et al. 2008
  • "Ca. M. ravipulmonis" Neimark, Mitchelmore & Leach 1998
  • "Ca. M. salmoniarum" corrig. Rasmussen et al. 2021
  • M. seminis Fischer et al. 2021
  • "M. sphenisci" Frasca et al. 2005
  • "M. timone" Greub & Raoult 2001
  • "Ca. M. tructae" Sanchez et al. 2020
  • "Ca. M. turicense" corrig. Willi et al. 2006
  • "M. volis" Dillehay et al. 1995
  • "M. vulturii" Oaks et al. 2004

Laboratory contaminant

Mycoplasma species are often found in research laboratories as contaminants in cell culture. Mycoplasmal cell culture contamination occurs due to contamination from individuals or contaminated cell culture medium ingredients.[37] Mycoplasma cells are physically small – less than 1  µm, so are difficult to detect with a conventional microscope.[citation needed]

Mycoplasmae may induce cellular changes, including

DNA probe, enzyme immunoassays, PCR, plating on sensitive agar and staining with a DNA stain including DAPI or Hoechst.[38]

An estimated 11 to 15% of U.S. laboratory cell cultures are contaminated with mycoplasma. A

Corning study showed that half of U.S. scientists did not test for Mycoplasma contamination in their cell cultures. The study also stated that, in former Czechoslovakia, 100% of cell cultures that were not routinely tested were contaminated while only 2% of those routinely tested were contaminated (study p. 6). Since the U.S. contamination rate was based on a study of companies that routinely checked for Mycoplasma, the actual contamination rate may be higher. European contamination rates are higher and that of other countries are higher still (up to 80% of Japanese cell cultures).[39]
About 1% of published Gene Expression Omnibus data may have been compromised.[40][41] Several antibiotic-containing formulations of antimycoplasmal reagents have been developed over the years.[42]

Synthetic mycoplasma genome

A chemically synthesized genome of a mycoplasmal cell based entirely on synthetic DNA which can self-replicate has been referred to as Mycoplasma laboratorium.[43]

Pathogenicity

Several Mycoplasma species can

pelvic inflammatory diseases. Mycoplasma infections in humans are associated with skin eruptions in 17% of cases.[44]
: 293 

P1 antigen

The P1 antigen is the primary

erythrocytes which can lead to autoantibody agglutination from mycobacteria infection.[45]

Sexually transmitted infections

Mycoplasma and Ureaplasma species are not part of the normal vaginal flora. Some Mollicutes species are spread through sexual contact.[46] These species have a negative effect on fertility.[46] Mollicutes species colonizing the human genital tract are:[46]

  • U. urealyticum
  • M. hominis
  • M. genitalium
  • M. penetrans
  • M. primatum (considered nonpathogenic)
  • M. spermatophilum (considered nonpathogenic)

M. hominis causes male sterility/Genitals inflammation in humans.[citation needed]

Infant mortality

Low birth-weight, preterm infants are susceptible to Mycoplasma and Ureaplasma infections.[8]

Links to cancer

Several species of Mycoplasma are frequently detected in different types of cancer cells.[47][48][49] These species are:

The majority of these Mycoplasma species have shown a strong correlation to malignant transformation in mammalian cells in vitro.

Mycoplasma infection and host cell transformation

The presence of Mycoplasma was first reported in samples of cancer tissue in the 1960s.

hyperchromatic due to an increase of DNA in the nucleus of the cells. In later stages, the cells lose the need for solid support to grow and proliferate,[56] as well as the normal contact-dependent inhibition cells.[49]

Possible intracellular mechanisms of mycoplasmal malignant transformation

Karyotypic changes related to mycoplasma infections

Cells infected with Mycoplasma for an extended period of time show significant chromosomal abnormalities. These include the addition of chromosomes, the loss of entire chromosomes, partial loss of chromosomes, and

c-myc, HRAS,[50] and vav.[48] The activity of proto-oncogenes is not the only cellular function that is affected; tumour suppressor genes are affected by the chromosomal changes induced by mycoplasma, as well. Partial or complete loss of chromosomes causes the loss of important genes involved in the regulation of cell proliferation.[49] Two genes whose activities are markedly decreased during chronic infections with mycoplasma are the Rb and the p53 tumour suppressor genes.[48] Another possible mechanism of carcinogenesis is RAC1 activation by a small GTPase-like protein fragment of Mycoplasma.[57] A major feature that differentiates mycoplasmas from other carcinogenic pathogens is that the mycoplasmas do not cause the cellular changes by insertion of their own genetic material into the host cell.[50] The exact mechanism by which the bacterium causes the changes is not yet known.[citation needed
]

Partial reversibility of malignant transformations

The malignant transformation induced by Mycoplasma species is also different from that caused by other pathogens in that the process is reversible. The state of reversal is, however, only possible up to a certain point during the infection. The window of time when reversibility is possible varies greatly; it depends primarily on the Mycoplasma involved. In the case of M. fermentans, the transformation is reversible until around week 11 of infection and starts to become irreversible between weeks 11 and 18.

) before the irreversible stage, the infected cells should return to normal.

Connections to cancer in vivo and future research

Epidemiologic, genetic, and molecular studies suggest infection and inflammation initiate certain cancers, including those of the prostate. M. genitalium and M. hyorhinis induce malignant phenotype in benign human prostate cells (BPH-1) that were not tumorigenic after 19 weeks of exposure. [53]

Types of cancer associated with Mycoplasma

Colon cancer: In a study to understand the effects of Mycoplasma contamination on the quality of cultured human colon cancer cells, a positive correlation was found between the number of M. hyorhinis cells present in the sample and the percentage of CD133-positive cells (a glycoprotein with an unknown function).[59]

Gastric cancer: Strong evidence indicates the infection of M. hyorhinis contributes to the development of cancer within the stomach and increases the likelihood of malignant cancer cell development.[60]

Lung cancer: Studies on lung cancer have supported the belief that more than a coincidental positive correlation exists between the appearance of Mycoplasma strains in patients and the infection with tumorigenesis.[61]

Prostate cancer: p37, a protein encoded for by M. hyorhinis, has been found to promote the invasiveness of prostate cancer cells. The protein also causes the growth, morphology, and gene expression of the cells to change, causing them to become a more aggressive phenotype.[62]

Renal cancer: Patients with renal cell carcinoma (RCC) exhibited a significantly high amount of Mycoplasma sp. compared with the healthy control group. This suggests Mycoplasma may play a role in the development of RCC.[58]

See also

References

  1. .
  2. .
  3. ^ .
  4. ^ Frank B (1889). "Ueber der Pilzsymbiose der Leguminosen" [On fungal symbioses of legumes]. Berichte der Deutschen Botanischen Gesellschaft (in German). 7: 332–346. From p. 335: "Die durch die Infection entstandene veränderte Art des Plasmas in den Rindenzellen will ich, da sie offenbar durch die Vermischmung mit einem pilzartigen Wesen entstanden ist, als Mycoplasma bezeichnen." [I want to designate as "mycoplasma" the altered type of plasma in the cortex cells which arose by infection, since it [i.e., the altered type of plasma] obviously arose by mixing with a fungal organism.]
  5. .
  6. .
  7. ^ .
  8. ^ .
  9. .
  10. .
  11. . Retrieved 28 March 2020 – via World Health Organization.
  12. .
  13. .
  14. ^ "Mycoplasma". The Lecturio Medical Concept Library. Retrieved 8 July 2021.
  15. ^
    S2CID 21257985
    .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. ^ a b A.C. Parte, et al. "Mycoplasma". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 9 September 2022.
  22. PMID 17687503
    .
  23. ^ .
  24. ^ Sayers, et al. "Mycoplasma". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 9 September 2022.
  25. PMID 31385780
    .
  26. .
  27. ^ a b "Genus: Mycoplasmoides". lpsn.dsmz.de.; see also LPSN FAQ on correct name
  28. ^
    PMID 35947640
    .
  29. .
  30. ^ "The LTP". Retrieved 20 November 2023.
  31. ^ "LTP_all tree in newick format". Retrieved 20 November 2023.
  32. ^ "LTP_08_2023 Release Notes" (PDF). Retrieved 20 November 2023.
  33. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  34. ^ "bac120_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  35. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  36. ^ LPSN lpsn.dsmz.de
  37. PMID 19003295
    .
  38. . Retrieved 8 July 2021 – via National Center for Biotechnology Information, U.S. National Library of Medicine.
  39. ^ John Ryan (2008). "Understanding and Managing Cell Culture Contamination" (PDF). Corning Incorporated. p. 24. Archived from the original (PDF) on 8 July 2011. Retrieved 4 August 2010.
  40. PMID 20047202
    .
  41. ^ Link Archived 30 March 2012 at the Wayback Machine into RNAnet showing contamination of GEO. Press plot and drag blue crosshairs to expose links to description of experiments on human RNA samples
  42. ^ BM-Cyclin Archived 2 February 2013 at archive.today by Roche, MRA by ICN, Plasmocin by Invivogen and more recently De-Plasma Archived 9 April 2013 at the Wayback Machine by TOKU-E.
  43. PMID 20488990
    .
  44. .
  45. .
  46. ^ . The term "mycoplasma" is often used to refer to any members of the class Mollicutes (for the purposes of this review as well), irrespective of the fact whether they truly belong to the genus Mycoplasma
  47. ^ .
  48. ^ .
  49. ^ .
  50. ^ .
  51. .
  52. ^ .
  53. ^ .
  54. .
  55. .
  56. .
  57. .
  58. ^ .
  59. .
  60. .
  61. .
  62. .

External links