N-Methyl-D-aspartic acid

Source: Wikipedia, the free encyclopedia.
(Redirected from
NMDA
)
N-Methyl-D-aspartic acid
Stereo, skeletal formula of N-methyl-D-aspartic acid
Ball and stick model of N-methyl-D-aspartic acid
Spacefill model of N-methyl-D-aspartic acid
Names
IUPAC name
N-Methyl-D-aspartic acid
Systematic IUPAC name
(2R)-2-(Methylamino)butanedioic acid[1]
Other names
N-Methylaspartate; N-Methyl-D-aspartate; NMDA
Identifiers
3D model (
JSmol
)
1724431
ChEBI
ChEMBL
ChemSpider
IUPHAR/BPS
KEGG
MeSH N-Methylaspartate
RTECS number
  • CI9457000
UNII
  • InChI=1 S/C5H9NO4/c1-6-3(5(9)10)2-4(7)8/h3,6H,2H2,1H3,(H,7,8)(H,9,10)/t3-/m1/s1
    Key: HOKKHZGPKSLGJE-GSVOUGTGSA-N
  • CN[C@H](CC(=O)O)C(=O)O
Properties
C5H9NO4
Molar mass 147.130 g·mol−1
Appearance White, opaque crystals
Odor Odorless
Melting point 189 to 190 °C (372 to 374 °F; 462 to 463 K)
log P 1.39
Acidity (pKa) 2.206
Basicity (pKb) 11.791
Hazards
Lethal dose or concentration (LD, LC):
137 mg kg−1 (intraperitoneal, mouse)
Related compounds
Related amino acid derivatives
  • beta-Methylamine-L-alanine
Related compounds
Dimethylacetamide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

N-methyl-D-aspartic acid or N-methyl-D-aspartate (NMDA) is an

seizures
.

Biological function

In 1962, J.C. Watkins reported synthesizing NMDA, an

Animalia from lancelets to mammals.[4][5] At homeostatic levels NMDA plays an essential role as a neurotransmitter and neuroendocrine regulator.[6] At increased but sub–toxic levels NMDA becomes neuro-protective. [citation needed] In excessive amounts NMDA is an excitotoxin. Behavioral neuroscience research utilizes NMDA excitotoxicity to induce lesions in specific regions of an animal subject's brain or spinal cord to study behavioral changes.[7]

The mechanism of action for the NMDA receptor is a specific agonist binding to its NR2 subunits, and then a non-specific cation channel is opened, which can allow the passage of Ca2+ and Na+ into the cell and K+ out of the cell. Therefore, NMDA receptors will only open if glutamate is in the synapse and concurrently the postsynaptic membrane is already depolarized - acting as coincidence detectors at the neuronal level.[8] The excitatory postsynaptic potential (EPSP) produced by activation of an NMDA receptor also increases the concentration of Ca2+ in the cell. The Ca2+ can in turn function as a second messenger in various signaling pathways.[9][10][11][12] This process is modulated by a number of endogenous and exogenous compounds and plays a key role in a wide range of physiological (such as memory) and pathological processes (such as excitotoxicity).

NMDA receptor activated

Antagonists

Examples of

APV, amantadine, dextromethorphan (DXM), ketamine, magnesium,[13] tiletamine, phencyclidine (PCP), riluzole, memantine, methoxetamine (MXE), methoxphenidine (MXP) and kynurenic acid. While dizocilpine is generally considered to be the prototypical NMDA receptor blocker and is the most common agent used in research, animal studies have demonstrated some amount of neurotoxicity, which may or may not also occur in humans. These compounds are commonly referred to as NMDA receptor antagonists
.

See also

  • Anti-NMDA-receptor encephalitis

References

  1. ^ "N-Methylaspartate - Compound Summary". PubChem Compound. USA: National Center for Biotechnology Information. 24 June 2005. Identification. Retrieved 9 January 2012.
  2. PMID 14056452
    .
  3. .
  4. .
  5. .
  6. . Retrieved 2020-05-02.
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .

Further reading

This page is based on the copyrighted Wikipedia article: NMDA. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy