NSP3 (rotavirus)

Source: Wikipedia, the free encyclopedia.
NSP3 (rotavirus)
Identifiers
SymbolRota_NSP3
SCOP2
d1lj2a_ / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Cellular vs Rotavirus Translation

Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells.[1]

Four

oligoribonucleotides, it was established that the minimal RNA sequence required for binding of NSP3A is GACC.[2]

Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A)-binding protein from eIF4F. And NSP3A, by taking the place of PABP on eIF4GI, is responsible for the shut-off of cellular protein synthesis.[3]

Expression of NSP3 in mammalian cells allows the efficient

translation of virus-like mRNA: NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.[4]

Site-directed mutagenesis and isothermal titration calorimetry documented that NSP3 and PABP use analogous eIF4G recognition strategies, despite marked differences in tertiary structure.[5]

Using the yeast two-hybrid assay,

RoXan a novel cellular protein was found to bind NSP3. The interaction between NSP3 and RoXaN does not impair the interaction between NSP3 and eIF4GI, and a ternary complex made of NSP3, RoXaN, and eIF4G I can be detected in rotavirus-infected cells, implicating RoXaN in translation regulation.[6]

References