Electrical muscle stimulation

Source: Wikipedia, the free encyclopedia.
(Redirected from
Neuromuscular electrical stimulation
)

Electrical muscle stimulation (EMS), also known as neuromuscular electrical stimulation (NMES) or electromyostimulation, is the elicitation of muscle contraction using electric impulses. EMS has received an increasing amount of attention in the last few years for many reasons: it can be utilized as a strength training tool for healthy subjects and athletes; it could be used as a rehabilitation and preventive tool for people who are partially or totally immobilized; it could be utilized as a testing tool for evaluating the neural and/or muscular function in vivo. EMS has been proven to be more beneficial before exercise and activity due to early muscle activation. Recent studies have found that electrostimulation has been proven to be ineffective during post exercise recovery and can even lead to an increase in Delayed onset muscle soreness (DOMS).[1]

The impulses are generated by the device and are delivered through electrodes on the skin near to the muscles being stimulated. The electrodes are generally pads that adhere to the skin. The impulses mimic the

U.S. Food and Drug Administration (FDA).[4]

A number of reviews have looked at the devices.[5][6]

Uses

Active recovery session
Athlete recovering with four-channel, electrical muscle stimulation machine attached through self-adhesive pads to her hamstrings

Electrical muscle stimulation can be used as a training,

therapeutic,[10][11] or cosmetic
tool.

Physical rehabilitation

In medicine, EMS is used for rehabilitation purposes, for instance in

tendons). This is distinct from transcutaneous electrical nerve stimulation (TENS), in which an electric current is used for pain therapy. "The main difference is the desired outcome. TENS unit is a medical device for pain relief. The desired outcome is to reduce pain by stimulating different nerve signals. EMS fitness is also an FDA-cleared medical device but meant for muscle development. EMS fitness is designed to stimulate all the major muscle groups to elicit strength and endurance adaptations."[12] In the case of TENS, the current is usually sub-threshold, meaning that a muscle contraction is not observed.[original research?
]

For people who have progressive diseases such as cancer or chronic obstructive pulmonary disease, EMS is used to improve muscle weakness for those unable or unwilling to undertake whole-body exercise.

quadriceps muscle strength, however, further research is needed as this evidence is graded as low certainty.[14] The same study also indicates that EMS may lead to increased muscle mass.[13] Low certainty evidence indicates that adding EMS to an existing exercise programme may help people who are unwell spend fewer days confined to their beds.[15]

During EMS training, a set of complementary muscle groups (e.g., biceps and triceps) are often targeted in alternating fashion, for specific training goals,[16] such as improving the ability to reach for an item.

Weight loss

The FDA rejects certification of devices that claim weight reduction.[17] EMS devices cause a calorie burning that is marginal at best: calories are burnt in significant amount only when most of the body is involved in physical exercise: several muscles, the heart and the respiratory system are all engaged at once.[18] However, some authors imply that EMS can lead to exercise since people toning their muscles with electrical stimulation are more likely afterwards to participate in sporting activities as the body becomes ready, fit, willing and able to take on physical activity.[16]

Effects

"Strength training by NMES does promote neural and muscular adaptations that are complementary to the well-known effects of voluntary resistance training".[19] This statement is part of the editorial summary of a 2010 world congress of researchers on the subject. Additional studies on practical applications, which came after that congress, pointed out important factors that make the difference between effective and ineffective EMS.[20][21] This in retrospect explains why in the past some researchers and practitioners obtained results that others could not reproduce. Also, as published by reputable universities, EMS causes adaptation, i.e. training, of muscle fibers.[22] Because of the characteristics of skeletal muscle fibers, different types of fibers can be activated to differing degrees by different types of EMS, and the modifications induced depend on the pattern of EMS activity.[23] These patterns, referred to as protocols or programs, will cause a different response from contraction of different fiber types. Some programs will improve fatigue resistance, i.e. endurance, others will increase force production.[24]

History

Luigi Galvani (1761) provided the first scientific evidence that current can activate muscle. During the 19th and 20th centuries, researchers studied and documented the exact electrical properties that generate muscle movement.[25][26] It was discovered that the body functions induced by electrical stimulation caused long-term changes in the muscles.[27][28] In the 1960s, Soviet sport scientists applied EMS in the training of elite athletes, claiming 40% force gains.[29] In the 1970s, these studies were shared during conferences with the Western sport establishments. However, results were conflicting, perhaps because the mechanisms in which EMS acted were poorly understood.[30] Medical physiology research[31][23] pinpointed the mechanisms by which electrical stimulation causes adaptation of cells of muscles, blood vessels[32][33][34] and nerves.[24]

Society and culture

United States regulation

The

U.S. Food and Drug Administration
(FDA) certifies and releases EMS devices into two broad categories: over-the counter devices (OTC), and prescription devices. OTC devices are marketable only for muscle toning; prescription devices can be purchased only with a medical prescription for therapy. Prescription devices should be used under the supervision of an authorized practitioner, for the following uses:

  • Relaxation of muscle spasms;
  • Prevention or retardation of disuse atrophy;
  • Increasing local blood circulation;
  • Muscle re-education;
  • Immediate post-surgical stimulation of calf muscles to prevent venous thrombosis;
  • Maintaining or increasing range of motion.

The FDA mandates that manuals prominently display contraindication, warnings, precautions and adverse reactions, including: no use for wearer of pacemaker; no use on vital parts, such as carotid sinus nerves, across the chest, or across the brain; caution in the use during pregnancy, menstruation, and other particular conditions that may be affected by muscle contractions; potential adverse effects include skin irritations and burns

Only FDA-certified devices can be lawfully sold in the US without medical prescription. These can be found at the corresponding FDA webpage for certified devices.[35] The FTC has cracked down on consumer EMS devices that made unsubstantiated claims;[36] many have been removed from the market, some have obtained FDA certification.

Devices

Relax Acizor

Non-professional devices target home-market consumers[37] with wearable units in which EMS circuitry is contained in belt-like garments (ab toning belts) or other clothing items.

The Relax-A-Cizor was one brand of device manufactured by the U.S. company Relaxacizor, Inc.[38][39][40][41][42][43]

From the 1950s, the company marketed the device for use in weight loss and fitness. Electrodes from the device were attached to the skin and caused muscle contractions by way of electrical currents.[38] The device caused 40 muscular contractions per minute in the muscles affected by the motor nerve points in the area of each pad. The directions for use recommended use of the device at least 30 minutes daily for each figure placement area, and suggested that the user might use it for longer periods if they wished. The device was offered in a number of different models which were powered either by battery or household current.[44]

Relax-A-Cizors had from 1 to 6 channels. Two pads (or electrodes) were connected by wires to each channel. The user applied from 2 to 12 pads to various parts of their body. For each channel there was a dial which purported to control the intensity of the electrical current flowing into the user's body between the two pads connected to that channel.[44]

As of 1970, the device was manufactured in Chicago, Illinois, by Eastwood Industries, Inc., a wholly owned subsidiary of Relaxacizor, Inc., and was then distributed throughout the country at the direction of Relaxacizor, Inc., or Relaxacizor Sales, Inc.[44]

The device was banned by the United States Food and Drug Administration in 1970 as it was deemed to be potentially unhealthy and dangerous to the users.[38][44] The case went to court, and the United States District Court for the Central District of California held that the Relax-A-Cizor was a "device" within the meaning of 21 U.S.C. § 321 (h) because it was intended to affect the structure and functions of the body as a girth reducer and exerciser, and upheld the FDA's assertions that the device was potentially hazardous to health.[44]

The FDA informed owners of Relax-A-Cizors that second-hand sale of Relax-A-Cizors was illegal, and recommended that they should destroy the devices or render them inoperable.[42]

Slendertone is another brand name.

U.S. Food and Drug Administration for over-the-counter sale for toning, strengthening and firming abdominal muscles.[46]

See also

References

  1. PMID 29755363
    .
  2. .
  3. ^ Examples of peer-reviewed research articles attesting increased muscular performance by utilizing EMS:[improper synthesis?]
  4. ^ FDA Guidance Document for Powered Muscle Stimulator, standard indications for use, page 4; contraindications, p. 7; warnings and precautions, p. 8. Product code: NGX
  5. S2CID 1110395
    .
  6. .
  7. .
  8. .
  9. ^ Porcari, John P.; Miller, Jennifer; Cornwell, Kelly; Foster, Carl; Gibson, Mark; McLean, Karen; Kernozek, Tom (2005). "The effects of neuromuscular stimulation training on abdominal strength, endurance and selected anthropometric measure". Journal of Sports Science and Medicine. 4: 66–75.
  10. S2CID 9708216
    .
  11. .
  12. ^ Sanchez, Conrad (5 August 2022). "Tens Unit Vs. EMS Fitness - Bodybuzz". Bodybuzz EMS Workout. Retrieved 31 July 2023.
  13. ^
    PMID 27748503
    .
  14. .
  15. .
  16. ^ a b Vrbova, Gerta; Olga Hudlicka; Kristin Schaefer Centofanti (2008). Application of Muscle-Nerve Stimulation in Health and Disease. Springer. p. 70.
  17. ^ FDA Import Alert 10/02/2009 Electrical Muscle Stimulators and Iontophoresis Devices Muscle stimulators are misbranded when any of the following claims are made: girth reduction, loss of inches, weight reduction, cellulite removal, bust development, body shaping and contouring, and spot reducing.
  18. S2CID 13357541
    .
  19. .
  20. .
  21. ^ Filipovic, Andre; Heinz Kleinöder; Ulrike Dörmann; Joachim Mester (November 2011). "Electromyostimulation-a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters – part 2". Journal of Strength and Conditioning Research. 25 (11): 3218–3238.
    S2CID 9205854
    .
  22. ^ Quoted from National Skeletal Muscle Research Center; UCSD, Muscle Physiology Home Page – Electrical Stimulation Archived 18 July 2014 at the Wayback Machine
  23. ^
    PMID 5767881
    .
  24. ^ .
  25. ^ Ranvier, Louis-Antoine (1874). "De quelques faits relatifs à l'histologie et à la physiologie des muscles striés". Archives de Physiologie Normale et Pathologique (in French). 6: 1–15.
  26. JSTOR 81340
    .
  27. .
  28. .
  29. .
  30. ^ Siff, Mel (1990). "Applications of Electrostimulation in Physical Conditioning: A Review". Journal of Strength and Conditioning Research. 4 (1).
  31. ]
  32. .
  33. .
  34. .
  35. ^ FDA-Certified Devices
  36. ^ FTC Charges Three Top-selling Electronic Abdominal Exercise Belts with Making False Claims
  37. PMID 24431963
    .
  38. ^ a b c Kate Knibbs (14 July 2015). "The Fitness Wearable So Dangerous It Was Supposed to Be Destroyed". Gizmodo. Gawker Media. Retrieved 29 July 2015.
  39. ^ "April 29, 1970 – 400,000 Buyers Can Be Wrong". Archives.chicagotribune.com. 29 April 1970. Retrieved 29 July 2015.
  40. ^ "That Was Then, This Is Now: How 72 Brands From 'Mad Men' Have Changed Since Don Draper Was in Charge". Consumerist. 15 May 2015. Retrieved 29 July 2015.
  41. . Retrieved 29 July 2015. Relax-a-cizor.
  42. ^ a b "The Relaxacisor". MuseumOfQuackery.com. U.S. Department of Health Education and Welfare. Retrieved 6 February 2017.
  43. ^ ""Cellulite" Removers". Quackwatch. 9 October 2000. Retrieved 29 July 2015.
  44. ^ a b c d e "United States v. Relaxacizor, Inc., 340 F. Supp. 943 – Dist. Court, CD California 1970". Google Scholar. Retrieved 29 July 2015.
  45. ISSN 0099-9660
    . Retrieved 21 July 2016.
  46. ^ "Electronic Muscle Stimulators". www.fda.gov. U.S. Food and Drug Administration. 25 March 2015. Retrieved 21 July 2016.

Further reading

  • Sila Fit. Electro Muscle Stimulation Training. Sila Fit. This compilation aims to function as a practical guide for comprehending electrical muscle stimulation in sports training. It is enriched with content conveyed by the author during workshops and supplemented by appendices authored by professional trainers.