Next-generation matrix

Source: Wikipedia, the free encyclopedia.

In

infectious diseases. In population dynamics it is used to compute the basic reproduction number for structured population models.[1] It is also used in multi-type branching models for analogous computations.[2]

The method to compute the basic reproduction ratio using the next-generation matrix is given by Diekmann et al. (1990)[3] and van den Driessche and Watmough (2002).[4] To calculate the basic reproduction number by using a next-generation matrix, the whole population is divided into compartments in which there are infected compartments. Let be the numbers of infected individuals in the infected compartment at time t. Now, the

epidemic model is[citation needed
]

, where

In the above equations, represents the rate of appearance of new infections in compartment . represents the rate of transfer of individuals into compartment by all other means, and represents the rate of transfer of individuals out of compartment . The above model can also be written as

where

and

Let be the disease-free equilibrium. The values of the parts of the

Jacobian matrix
and are:

and

respectively.

Here, and are m × m matrices, defined as and .

Now, the matrix is known as the next-generation matrix. The basic reproduction number of the model is then given by the eigenvalue of with the largest absolute value (the spectral radius of . Next generation matrices can be computationally evaluated from observational data, which is often the most productive approach where there are large numbers of compartments.[5]

See also

  • Mathematical modelling of infectious disease

References

  1. OCLC 120182.{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link
    )
  2. .
  3. .
  4. , retrieved 2023-02-28

Sources