Nuclear graphite

Source: Wikipedia, the free encyclopedia.

Nuclear graphite is any grade of graphite, usually synthetic graphite, manufactured for use as a moderator or reflector within a nuclear reactor. Graphite is an important material for the construction of both historical and modern nuclear reactors, due to its extreme purity and ability to withstand extremely high temperature.

Core graphite from the Molten-Salt Reactor Experiment

History

Otto Frisch.[1][2]
Shortly thereafter, word of the discovery spread throughout the international physics community.

In order for the fission process to chain react, the neutrons created by uranium fission must be slowed down by interacting with a neutron moderator (an element with a low atomic weight, that will "bounce", when hit by a neutron) before they will be captured by other uranium atoms. By late 1939, it was generally known that heavy water might be used as a moderator. Graphite was dismissed by the Germans as a possible moderator due to containing boron as an impurity. However, graphite of high enough purity was developed in the early 1940's in the United States, and this then was utilized in the first and subsequent nuclear reactors for The Manhattan Project. [3]

In February 1940, using funds that were allocated partly as a result of the

Union Carbide and Carbon Corporation in Cleveland, Ohio) for use in Enrico Fermi's first fission experiments, the so-called exponential pile.[4]: 190  Fermi writes that "The results of this experiment was [sic] somewhat discouraging"[5] presumably due to the absorption of neutrons by some unknown impurity.[6]: 40  So, in December 1940 Fermi and Szilard met with Herbert G. MacPherson and V. C. Hamister at National Carbon to discuss the possible existence of impurities in graphite.[7]: 143  During this conversation it became clear that minute quantities of boron impurities were the source of the problem.[3][8]

As a result of this meeting, over the next two years, MacPherson and Hamister developed thermal and gas extraction purification techniques at National Carbon for the production of boron-free graphite.[8][9] The resulting product was designated AGOT Graphite ("Acheson Graphite Ordinary Temperature") by National Carbon, and it was "the first true nuclear grade graphite".[10]

During this period, Fermi and Szilard purchased graphite from several manufacturers with various degrees of

X-10 graphite reactor in Oak Ridge TN (early 1943) and the first reactors at the Hanford Site in Washington (mid 1943),[11]: 5  for the production of plutonium during and after World War II.[8][10] The AGOT process and its later refinements became standard techniques in the manufacture of nuclear graphite.[11]

The neutron cross section of graphite was also investigated during the Second World War in Germany by

neutron absorption cross section of about 6.4 mb[12]: 370  to 7.5 mb (Haag 2005). Heisenberg therefore decided that graphite would be unsuitable as a moderator in a reactor design using natural uranium, due to this apparently high rate of neutron absorption.[3][12][13] Consequently, the German effort to create a chain reaction involved attempts to use heavy water, an expensive and scarce alternative, made all the more difficult to acquire as a consequence of the Norwegian heavy water sabotage by Norwegian and Allied forces. Writing as late as 1947, Heisenberg still did not understand that the only problem with graphite was the boron impurity.[13]

Graphite has also recently been used in nuclear

fusion reactors such as the Wendelstein 7-X. As of experiments published in 2019, graphite in elements of the stellarator's wall and a graphite island divertor have greatly improved plasma performance within the device, yielding better control over impurity and heat exhaust, and long high-density discharges.[14]

Wigner effect

In December 1942

fast neutron sources
available, would take several months to produce neutron irradiation equivalent to one day in a Hanford reactor.

This was the starting point for large-scale research programmes to investigate the property changes due to fast

Wigner energy
), and on many other properties have been observed many times and in many countries after the first results emerged from the X-10 reactor in 1944.

Although catastrophic behaviour such as fusion or crumbling of graphite pieces has never occurred, large changes in many properties do result from fast neutron irradiation which need to be taken into account when graphite components of nuclear reactors are designed. Although not all effects are well understood yet, more than 100 graphite reactors have successfully operated for decades since the 1940s. A few severe accidents in graphite reactors can in no case be attributed to insufficient information (at the time of design) regarding the properties of the graphite in use.[citation needed] In the 2010s, the collection of new material property data has improved knowledge significantly. [16][17]

Purity

Reactor-grade graphite must be free of neutron absorbing materials, especially boron, which has a large neutron capture cross section. Boron sources in graphite include the raw materials, the packing materials used in baking the product, and even the choice of soap (for example, borax) used to launder the clothing worn by workers in the machine shop.[11]: 80  Boron concentration in thermally purified graphite (such as AGOT graphite) can be less than 0.4 ppm[11]: 81  and in chemically purified nuclear graphite it is less than 0.06 ppm.[11]: 47 

Behaviour under irradiation

This describes the behavior of nuclear graphite, specifically when exposed to fast neutron irradiation.

Specific phenomena addressed:

As the state of nuclear graphite in active reactors can only be determined at routine inspections, about every 18 months, mathematical modelling of the nuclear graphite as it approached end-of-life is important. However as only surface features can be inspected, and the exact time of changes is not known, reliability modelling is especially difficult.[18]

Manufacture

Nuclear graphite for the UK

extruded into billets, and then baked at 1,000 °C for several days. To reduce porosity and increase density, the billets were impregnated with coal tar at high temperature and pressure before a final bake at 2,800 °C. Individual billets were then machined into the final required shapes.[19]

Accidents in graphite-moderated reactors

There have been two major

accidents in graphite-moderated reactors, the Windscale fire and the Chernobyl disaster
.

In the Windscale fire, an untested annealing process for the graphite was used, causing overheating in unmonitored areas of the core and leading directly to the ignition of the fire. The material that ignited was not the graphite moderator itself, but rather the canisters of metallic uranium fuel within the reactor. When the fire was extinguished, it was found that the only areas of the graphite moderator to have incurred thermal damage were those that had been close to the burning fuel canisters.[20][21]

In the Chernobyl disaster, the moderator was not responsible for the primary event. Instead, a massive power excursion (exacerbated by the high and positive void coefficient of the RBMK as it was designed and used at the time) during a mishandled test caused the catastrophic failure of the reactor vessel and a near-total loss of coolant supply. The result was that the fuel rods rapidly melted and flowed together while in an extremely high power state, causing a small portion of the core to reach a state of runaway prompt criticality and leading to a massive energy release,[22] resulting in the explosion of the reactor core and the destruction of the reactor building. The massive energy release during the primary event superheated the graphite moderator, and the disruption of the reactor vessel and building allowed the superheated graphite to come into contact with atmospheric oxygen. As a result, the graphite moderator caught fire, sending a plume of highly radioactive fallout into the atmosphere and over a very widespread area.[23]

References

  • Haag, G. 2005, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation, FZ-Juelich, Juel-4813.
  1. ^ "Manhattan Project: The Discovery of Fission, 1938-1939". www.osti.gov. Retrieved 2022-12-01.
  2. ^
  3. ^ .
  4. ^ Fermi, Enrico (1946), "Development of the First chain reacting pile", Proceedings of the American Philosophical Society, 90 (1): 2024
  5. ^ a b c Fermi, Enrico (1965). Collected Papers. Vol. 2. University of Chicago Press.
  6. .
  7. ^
  8. ^ Currie, L. M.; Hamister, V. C.; MacPherson, H. G. (1955). The Production and Properties of Graphite for Reactors. National Carbon Company.
  9. ^
  10. ^ .
  11. ^
    ISBN 978-3-0348-0202-4 {{citation}}: |first1= has generic name (help
    )
  12. ^
  13. .
  14. ^ Fermi, Enrico (1942), "Report for Month Ending December 15, 1942, Physics Division", United States Atomic Energy Commission report CP-387
  15. S2CID 137890948
    .
  16. .
  17. ^ Philip Maul; Peter Robinson; Jenny Burrowand; Alex Bond (June 2017). "Cracking in Nuclear Graphite" (PDF). Mathematics Today. Retrieved 10 March 2019.
  18. . Retrieved 2009-06-15.
  19. ^ "Meeting of RG2 with Windscale Pile 1 Decommissioning Project Team" (PDF). Nuclear Safety Advisory Committee. 2005-09-29. NuSAC(2005)P 18. Retrieved 2008-11-26.
  20. AEA Technology. IAEA. IAEA-TECDOC—1043. Archived from the original
    on 12 October 2008. Retrieved 13 November 2010.
  21. .
  22. ^ "Frequently Asked Chernobyl Questions". International Atomic Energy Agency – Division of Public Information. May 2005. Archived from the original on 23 February 2011. Retrieved 23 March 2011.

External links