Nucleoside

Source: Wikipedia, the free encyclopedia.

Nucleosides are

anomeric carbon is linked through a glycosidic bond to the N9 of a purine or the N1 of a pyrimidine. Nucleotides are the molecular building blocks of DNA and RNA
.

List of nucleosides and corresponding nucleobases

This list does not include modified nucleobases and the corresponding nucleosides

The reason for 2 symbols, shorter and longer, is that the shorter ones are better for contexts where explicit disambiguation is superfluous (because context disambiguates) and the longer ones are for contexts where explicit disambiguation is judged to be needed or wise. For example, when discussing long nucleobase sequences in genomes, the CATG symbol system is much preferable to the Cyt-Ade-Thy-Gua symbol system (see Nucleic acid sequence § Notation for examples), but in discussions where confusion is likelier, the unambiguous symbols can be used.

Nitrogenous base Ribonucleoside Deoxyribonucleoside
Chemical structure of adenine
adenine
symbol A or Ade
Chemical structure of adenosine
adenosine
symbol A or Ado
Chemical structure of deoxyadenosine
deoxyadenosine
symbol dA or dAdo
Chemical structure of guanine
guanine
symbol G or Gua
Chemical structure of guanosine
guanosine
symbol G or Guo
Chemical structure of deoxyguanosine
deoxyguanosine
symbol dG or dGuo
Chemical structure of thymine
thymine
(5-methyluracil)
symbol T or Thy
Chemical structure of 5-methyluridine
5-methyluridine
(ribothymidine)
symbol m⁵U
Chemical structure of thymidine
thymidine
(deoxythymidine)
symbol dT or dThd
(dated: T or Thd)
Chemical structure of uracil
uracil
symbol U or Ura
Chemical structure of uridine
uridine
symbol U or Urd
Chemical structure of deoxyuridine
deoxyuridine
symbol dU or dUrd
Chemical structure of cytosine
cytosine
symbol C or Cyt
Chemical structure of cytidine
cytidine
symbol C or Cyd
Chemical structure of deoxycytidine
deoxycytidine
symbol dC or dCyd

Sources

Nucleosides can be produced from nucleotides

.

Use in medicine and technology

In medicine several nucleoside analogues are used as antiviral or anticancer agents.[1][2][3][4] The viral polymerase incorporates these compounds with non-canonical bases. These compounds are activated in the cells by being converted into nucleotides. They are administered as nucleosides since charged nucleotides cannot easily cross cell membranes.

In molecular biology, several

analogues of the sugar backbone exist. Due to the low stability of RNA, which is prone to hydrolysis, several more stable alternative nucleoside/nucleotide analogues that correctly bind to RNA are used. This is achieved by using a different backbone sugar. These analogues include locked nucleic acids (LNA), morpholinos and peptide nucleic acids
(PNA).

In sequencing, dideoxynucleotides are used. These nucleotides possess the non-canonical sugar dideoxyribose, which lacks 3' hydroxyl group (which accepts the phosphate). DNA polymerases cannot distinguish between these and regular deoxyribonucleotides, but when incorporated a dideoxynucleotide cannot bond with the next base and the chain is terminated.

Prebiotic synthesis of ribonucleosides

In order to understand how life arose, knowledge is required of the chemical pathways that permit formation of the key building blocks of life under plausible prebiotic conditions. According to the RNA world hypothesis free-floating ribonucleosides and ribonucleotides were present in the primitive soup. Molecules as complex as RNA must have arisen from small molecules whose reactivity was governed by physico-chemical processes. RNA is composed of purine and pyrimidine nucleotides, both of which are necessary for reliable information transfer, and thus Darwinian natural selection and evolution. Nam et al.[5] demonstrated the direct condensation of nucleobases with ribose to give ribonucleosides in aqueous microdroplets, a key step leading to RNA formation. Also, a plausible prebiotic process for synthesizing pyrimidine and purine ribonucleosides and ribonucleotides using wet-dry cycles was presented by Becker et al.[6]

See also

References

External links