Nucleoside-phosphate kinase

Source: Wikipedia, the free encyclopedia.
nucleoside phosphate kinase
Identifiers
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

In

enzymology, a nucleoside-phosphate kinase (EC 2.7.4.4) is an enzyme that catalyzes the chemical reaction[1]

ATP + nucleoside phosphate ADP + nucleoside diphosphate

Thus, the two

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with a phosphate group as acceptor.[4] The systematic name of this enzyme class is ATP:nucleoside-phosphate phosphotransferase. This enzyme is also called NMP-kinase, or nucleoside-monophosphate kinase.

Structure

A number of

α helices
.

The [P-loop] typically has the amino acid sequence of Gly-X-X-X-X-Gly-Lys.[6] Similar sequences are found in many other nucleotide-binding proteins.

P-loop
is shown here in green while Ap5A is orange.

Mechanism

Metal ion interaction

To allow for interaction with this class of enzymes,

aspartate residue on the enzyme.[10]

The metal ion interaction facilitates binding by holding the ATP molecule in a position allowing for specific binding to the active site and by providing additional points for binding between the substrate and the enzyme. This increases the binding energy.

Conformational changes

Binding of

nucleoside monophosphate.[13]

The necessity of these conformational changes prevents the wasteful hydrolysis of ATP.

This enzyme mechanism is an example of

substrates
to bring them together in the correct position for the phosphoryl group to be transferred.

Biological function

Similar catalytic domains are present in a variety of proteins, including:

Evolution

When a phylogenetic tree composed of members of the nucleoside-phosphate kinase family was made,[14] it showed that these enzymes had originally diverged from a common ancestor into long and short varieties. This first change was drastic – the three-dimensional structure of the lid domain changed significantly.

Following the evolution of long and short varieties of NMP-kinases, smaller changes in the amino acid sequences resulted in the differentiation of subcellular localization.

References

  1. ^ Boyer PD, Lardy H, Myrback K, eds. (1962). The Enzymes. Vol. 6 (2nd ed.). New York: Academic Press. pp. 139–149.
  2. PMID 13363863
    .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. . Retrieved 2016-01-08.
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .