Omphalotus nidiformis

Source: Wikipedia, the free encyclopedia.

Omphalotus nidiformis
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Omphalotaceae
Genus: Omphalotus
Species:
O. nidiformis
Binomial name
Omphalotus nidiformis
(
O.K. Mill.
(1994)
Synonyms
Species synonymy[1]
  • Agaricus nidiformis Berk. (1844)
  • Agaricus lampas Berk. (1845)
  • Agaricus phosphorus Berk. (1848)
  • Agaricus noctilucus Berk. (1872)
  • Panus incandescens Berk. & Broome (1883)
  • Pleurotus lampas (Berk.) Sacc. (1887)
  • Pleurotus nidiformis (Berk.) Sacc. (1887)
  • Pleurotus phosphorus (Berk.) Sacc. (1887)
  • Dendrosarcus lampas (Berk.) Kuntze (1898)
  • Dendrosarcus berkeleyi Kuntze (1898)
  • Dendrosarcus nidiformis (Berk.) Kuntze (1898)
  • Lentinus incandescens (Berk. & Broome)
    Henn.
    (1898)
  • Pocillaria incandescens (Berk. & Broome) Kuntze (1898)
Omphalotus nidiformis
View the Mycomorphbox template that generates the following list
Gills on hymenium
Cap is infundibuliform
Hymenium is decurrent
Stipe is bare
Spore print is white
Ecology is
saprotrophic
or
parasitic
Edibility is poisonous

Omphalotus nidiformis, or ghost fungus, is a gilled

saprotrophic and parasitic
, and its fruit bodies are generally found growing in overlapping clusters on a wide variety of dead or dying trees.

First

poisonous; while not lethal, its consumption leads to severe cramps and vomiting. The toxic properties of the mushroom are attributed to compounds called illudins. O. nidiformis is one of several species in the cosmopolitan genus Omphalotus
, all of which have bioluminescent properties.

Taxonomy and naming

The ghost fungus was initially described in 1844 by English naturalist

Orson K. Miller, Jr. gave the ghost fungus its current binomial name when he transferred it to the genus Omphalotus with other bioluminescent mushrooms.[7]

The specific epithet nidiformis is derived from the Latin terms nīdus 'nest' and forma 'shape' or 'form', hence 'nest shaped'.[9] Lampas is derived from the Greek lampas/λαμπας 'torch'.[10] Common names include ghost fungus and Australian glow fungus.[11] Drummond reported that the local Aboriginal people were fearful when shown the luminescent fungus and called out chinga, a local word for spirit;[12] Drummond himself likened it to a will-o'-the-wisp.[3] On the Springbrook Plateau in southeastern Queensland, the local Kombumerri people believed the lights to be ancestors and gave the area a wide berth out of respect.[13]

The effect produced by it upon the traveller, when on a dark night he comes suddenly upon it glowing in the woods, is startling; for to a person unacquainted with this phenomenon the pale, livid, and deadly light emanating from it conveys to him an impression of something supernatural, and often causes no little degree of terror in weak minds or in those willing to believe in supernatural agencies.

Mordecai Cubitt Cooke[14]

Several Omphalotus species with similar bioluminescent properties occur worldwide, all of which are presumed poisonous. The best known are the North American jack o'lantern mushroom (O. olearius) and the tsukiyotake (O. japonicus (Kawam.) Kirchm. & O.K. Mill. (formerly known as Lampteromyces japonicus (Kawam.) Sing.), found in Japan and eastern Asia. A 2004 molecular study shows the ghost fungus to be most closely related to the western jack o'lantern mushroom (O. olivascens), which is abundant in Southern and Central California.[15] Miller notes that the colours and shades of the ghost fungus most closely resemble this species.[7]

Laboratory breeding experiments with it and other Omphalotus species have revealed a low level of compatibility (ability to breed and produce fertile hybrids), suggesting it is genetically distinct and has been isolated for a long time.[16] It is particularly poorly compatible with O. illudens, the authors of the study suggesting the separation may have been as long ago as the Late Carboniferous separation of Gondwana from Laurasia but conceding the lack of any fossil record makes it impossible to know whether the genus even existed at the time.[17]

Variation

Miller noted there appeared to be two colour forms reported across its range, namely a more cream-coloured form with darker shades of brown and grey in its cap that darkens with age, and a more wholly brownish form with paler edges and darker centre to its cap. He found the cream-coloured form to be strongly luminescent—the brightest of any fungus in the genus—with the cap, stipe and gills all glowing. The brown form was generally fainter, with its luminescence restricted to the gills. However, some strongly luminescent wholly brown-coloured mushrooms were recorded, and laboratory experiments showed all interbred freely and produced fertile offspring, leading Miller to conclude that these were phenotypic variants of a single taxon.[7]

Description

Darker-coloured fruit bodies, Botany, Sydney

The

gills are decurrent and often drip with moisture.[19] They are up to 13 mm (0.5 in) deep, somewhat distant to closely spaced, and have a smooth edge until they erode in maturity.[20] The stipe may be central to lateral in its attachment to the cap and is up to 8 cm (3 in) long and tapers to the base. The thin flesh is generally creamy white in colour,[19] but can have reddish tones near the base of the stipe. There is no distinctive smell or taste. The spore print is white.[20]

The

cap cuticle comprises a thin layer of 3–6 μm-wide hyphae that are interwoven either loosely or tightly. All hyphae of O. nidiformis have clamp connections.[20]

The bioluminescence of O. nidiformis fruit bodies is best seen in low-light conditions when the viewer's eyes have become dark-adapted. The gills are the most luminescent part of the fungus, emitting a greenish light that fades with age. Although the intensity of the luminescence is variable,[20] William Henry Harvey once reported that it was bright enough to read a watch face by.[21] It is not known if the mycelium is also luminescent.[22]

Omphalotus nidiformis may be confused with the edible brown oyster mushroom (Pleurotus australis), which is brown and does not glow in the dark.[19] Confusion with another edible lookalike, Pleurotus ostreatus, common in the Northern Hemisphere and cultivated commercially, has been the source for at least one case of poisoning reported in the literature.[23]

Distribution and habitat

Omphalotus nidiformis occurs in two disjunct ranges in southern Australia. In southwest

coconut tree stump.[28]

Ecology

Fruit bodies growing out of deep fissures in the bark of a dead Banksia serrata tree,
Sylvan Grove Native Garden, Picnic Point, New South Wales

A

Pinus or Platanus species.[20] It plays an important role in breaking down wood and recycling nutrients into the soil.[30]

Omphalotus species cause a

The

US Department of Agriculture considers there is a moderate to high risk of O. nidiformis being accidentally introduced to the United States in untreated eucalyptus woodchips from Australia.[32] Nearly a century ago, Cleland and Edwin Cheel suggested that even though the fungus was of "no great economic importance", "it would be advisable to destroy it by burning wherever found."[33]

Several species of Tapeigaster flies have been collected from the fruit bodies, including T. cinctipes, T. annulipes, and T. nigricornis; the latter species uses the fruit bodies as a host to rear its young.[34] Fruit bodies in Springbrook National Park have been observed to attract nocturnal insects such as beetles, native cockroaches and crickets (white-kneed cricket (Papuastus spp.) and thorny cricket), as well as giant rainforest snails (Hedleyella falconeri) and red triangle slugs (Triboniophorus graeffei), which voraciously consume the fungus.[13][35]

Biochemistry

Omphalotus nidiformis is not edible. Although reputedly mild tasting,[20] eating it will result in vomiting which generally occurs 30 minutes to two hours after consumption and lasts for several hours. There is no diarrhea and patients recover without lasting ill-effects.[36] Its toxicity was first mentioned by Anthony M. Young in his 1982 guidebook Common Australian Fungi.[7] The toxic ingredient of many species of Omphalotus is a sesquiterpene compound known as illudin S.[37] This, along with illudin M and a co-metabolite illudosin, have been identified in O. nidiformis.[38][39] The two illudins are common to the genus Omphalotus and not found in any other basidiomycete mushroom.[39] An additional three compounds unique to O. nidiformis have been identified and named illudins F, G and H.[40]

phenolic compounds.[28]

See also

References

  1. ^ a b "Omphalotus nidiformis". Interactive Catalogue of Australian Fungi. Royal Botanic Gardens Melbourne. Archived from the original on 15 March 2011. Retrieved 10 March 2011.
  2. ^ Berkeley, Miles Joseph (1844). "Decades of Fungi: First Decade". London Journal of Botany. 3: 185–94.
  3. ^ a b "Extract of a letter relating to Swan River Botany". London Journal of Botany. 1: 215–17. 1841.
  4. ^ Berkeley, Miles Joseph (1845). "Decades of Fungi: Decade III.–VII. Australian Fungi". London Journal of Botany. 4: 42–73 (see p. 44).
  5. ^ Berkeley, Miles Joseph (1848). "Decades of Fungi: Decade XX. Australian Fungi". London Journal of Botany. 7: 572–80 (see pp. 572–73).
  6. ^ Saccardo, Pier Andrea (1887). "Agaricinae, Leucosporae, Pleurotus". Sylloge Fungorum (in Latin). 5. Padua, Italy: Sumptibus Auctoris: 357.
  7. ^ a b c d e f g h i Miller, Orson K. Jr. (1994). "Observations on the genus Omphalotus in Australia". Mycologia Helvetica. 6 (2): 91–100.
  8. ^
    Wikidata Q104234720
    .
  9. .
  10. .
  11. ^ Allen, Jan. "Australian Glow Fungus". Plant of the Month: Autumn. Bilpin, New South Wales: Blue Mountains Botanic Garden, Mount Tomah. Archived from the original on 11 April 2013. Retrieved 1 December 2012.
  12. ^ a b Cleland, John B. (1976) [1934]. Toadstools and Mushrooms and Other Larger Fungi of South Australia. Adelaide, South Australia: South Australian Government Printer. p. 27.
  13. ^ a b Maguire, Garry (9 December 2011). "Luminous Ghost Fungus". Springbrook, Queensland: Springbrook Research Centre. Archived from the original on 28 December 2011. Retrieved 3 December 2012.
  14. ^ Cooke, Mordecai Cubitt (1895). Introduction to the Study of Fungi. London, United Kingdom: Adam and Charles Black. p. 90.
  15. ^
    PMID 21148949
    .
  16. .
  17. .
  18. .
  19. ^ .
  20. ^ .
  21. ^ Ducker, Sophie C. (1995). "Aseroë rubra – the stinking starfish fungus" (PDF). Australasian Mycologist. 14 (4): 47.
  22. PMID 18264584
    .
  23. .
  24. ^ Western Australian Herbarium (24 September 2012). "Omphalotus nidiformis (Berk.) O.K. Mill". FloraBase. Perth, Western Australia: Department of Environment and Conservation, Western Australian Government. Retrieved 1 December 2012.
  25. ^ Catcheside, Pam (October 2001). "News From South Australia" (PDF). Fungimap Newsletter. 15: 9. Archived from the original (PDF) on 2012-04-21.
  26. .
  27. ^ Cooper, Jerry (July 2011). "Materials for a Checklist of Pacific Island Basidiomycetes (excluding Rusts and Smuts)" (PDF). A Pacific Island Nomenclator of Basidiomycete Names (excluding Rusts & Smuts). Landcare New Zealand. p. 50. Retrieved 4 December 2012.
  28. ^
    ISSN 2221-1691. Archived from the original
    (PDF) on 2012-10-19. Retrieved 2012-12-02.
  29. ^ .
  30. ^ Western Australian Herbarium (July 2011). "Omphalotus nidiformis (Berk.) O.K. Mill. – Ghost Fungus". Plant of the Month. Perth, Western Australia: Department of Environment and Conservation, Western Australian Government. Retrieved 1 December 2012.
  31. .
  32. ^ Kliejunas, John T.; Burdsall, Harold H. Jr.; DeNitto, Gregg A.; Eglitis, Andris; Haugen, Dennis A.; Harverty, Michael I.; Micales, Jessie A.; Tkacz, Borys M.; Powell, Mark R. (2003). Pest Risk Assessment of the Importation into the United States of Unprocessed Logs and Chips of Eighteen Eucalypt Species From Australia (PDF). General Technical Report FPL-GTR-137 (Report). Madison, Wisconsin: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. pp. 133–34.
  33. ^ Cleland, John Burton; Cheel, Edwin (1916). "Common phosphorescent toadstool (Pleurotus nidiformis) and "sticky timber pholiote" (Pholiota adiposa), Agaricineae attacking wood, in Australia". International Review of the Science and Practice of Agriculture. 7 (2): 1045–46.
  34. ^ McAlpine, David K.; Kent, Deborah S. (1981–82). "Systematics of Tapeigaster (Diptera: Heleomyzidae) with notes on biology and larval morphology". Proceedings of the Linnean Society of New South Wales. 106 (1): 33–58 (see 56).
  35. ^ Young, T. (1996). "Some more records of fungi used as food by animals in Australia" (PDF). Australasian Mycologist. 15 (1): 8–9.
  36. ^ Southcott, Ronald Vernon (1974). "Notes on some poisonings and other clinical effects following ingestion of Australian fungi". South Australian Clinics. 6 (5): 442–78.
  37. .
  38. .
  39. ^ .
  40. .
  41. .

External links