Oncolytic virus

Source: Wikipedia, the free encyclopedia.

An oncolytic virus is a

tumour cells, but also to stimulate host anti-tumour immune system responses.[3][4] Oncolytic viruses also have the ability to affect the tumor micro-environment in multiple ways.[5][6]

The potential of viruses as anti-cancer agents was first realised in the early twentieth century, although coordinated research efforts did not begin until the 1960s.

The first oncolytic virus to be approved by a national regulatory agency was genetically unmodified ECHO-7 strain enterovirus

H101, was approved in China in 2005 for the treatment of head and neck cancer.[12] In 2015, talimogene laherparepvec (OncoVex, T-VEC), an oncolytic herpes virus which is a modified herpes simplex virus, became the first oncolytic virus to be approved for use in the United States and the European Union, for the treatment of advanced inoperable melanoma.[13]

On December 16, 2022, the Food and Drug Administration approved nadofaragene firadenovec-vncg (Adstiladrin, Ferring Pharmaceuticals) for adult patients with high-risk Bacillus Calmette-Guérin (BCG) unresponsive non-muscle invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) with or without papillary tumors. [14]

History

A connection between cancer

RIGVIR,[19] and others.[16] The early complications were occasional cases of uncontrolled infection (resulting in significant morbidity and mortality); an immune response would also frequently develop. While not directly harmful to the patient,[15] the response destroyed the virus thus preventing it from destroying the cancer.[17] Early efforts also found that only certain cancers could be treated through virotherapy.[18] Even when a response was seen, these responses were neither complete nor durable.[15] The field of virotherapy was nearly abandoned for a time, as the technology required to modify viruses didn't exist whereas chemotherapy and radiotherapy technology enjoyed early success. However, now that these technologies have been thoroughly developed and cancer remains a major cause of mortality, there is still a need for novel cancer therapies, garnering this once-sidelined therapy renewed interest.[15][20]

Herpes simplex virus

HSV1716 virus has induced tumour regression and increased survival times.[23][24][25]

In 1996, the first approval was given in Europe for a

radioactive iodine, so that individual cancer cells are killed by micro-dose radiation as well as by virus-induced cell lysis.[33]

Other oncolytic viruses based on HSV have also been developed and are in clinical trials.[34] One that has been approved by the FDA for advanced melanoma is Amgen's talimogene laherparepvec.[35]

Oncorine (H101)

The first oncolytic virus to be approved by a regulatory agency was a genetically modified adenovirus named

metastatic disease.[37] It is now marketed under the brand name Oncorine.[38]

Mechanisms of action

Immunotherapy

With advances in

immune checkpoint inhibitors, increased attention has been given to using oncolytic viruses to increase antitumor immunity.[39] There are two main considerations of the interaction between oncolytic viruses and the immune system.[citation needed
]

Immunity as an obstacle

A major obstacle to the success of oncolytic viruses is the patient immune system which naturally attempts to deactivate any virus. This can be a particular problem for intravenous injection, where the virus must first survive interactions with the blood complement and neutralising antibodies.[40] It has been shown that immunosuppression by chemotherapy and inhibition of the complement system can enhance oncolytic virus therapy.[41][42][43]

Pre-existing immunity can be partly avoided by using viruses that are not common human pathogens. However, this does not avoid subsequent antibody generation. Yet, some studies have shown that pre-immunity to oncolytic viruses doesn't cause a significant reduction in efficacy.[44]

Alternatively, the viral vector can be coated with a polymer such as polyethylene glycol, shielding it from antibodies, but this also prevents viral coat proteins adhering to host cells.[45]

Another way to help oncolytic viruses reach cancer growths after intravenous injection, is to hide them inside macrophages (a type of white blood cell). Macrophages automatically migrate to areas of tissue destruction, especially where oxygen levels are low, characteristic of cancer growths, and have been used successfully to deliver oncolytic viruses to prostate cancer in animals.[46]

Immunity as an ally

Although it poses a hurdle by inactivating viruses, the patient's immune system can also act as an ally against tumors; infection attracts the attention of the immune system to the tumour and may help to generate useful and long-lasting antitumor immunity.[47][48] One important mechanism is the release of substances by tumor lysis, such as tumor-associated antigens and danger associated-molecular patterns (DAMPs), which can elicit an antitumor immune response.[49] This essentially produces a personalised cancer vaccine.

Many cases of spontaneous remission of cancer have been recorded. Though the cause is not fully understood, they are thought likely to be a result of a sudden immune response or infection.

antigens), or direct treatment with immune-stimulating factors on skin cancers.[51] Some oncolytic viruses are very immunogenic and may by infection of the tumour, elicit an anti-tumor immune response, especially viruses delivering cytokines or other immune stimulating factors.[52][53]

Viruses selectively infect tumor cells because of their defective anti-viral response.

Imlygic, an attenuated herpes simplex virus, has been genetically engineered to replicate preferentially within tumor cells and to generate antigens that elicit an immune response.[39]

Oncolytic behaviour of wild-type viruses

Vaccinia virus

Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. Long before the smallpox eradication campaign was launched, VACV was exploited as a therapeutic agent for the treatment of cancer. In 1922, Levaditi and Nicolau reported that VACV was able to inhibit the growth of various tumors in mice and rats. This was the first demonstration of viral oncolysis in the laboratory. This virus was subsequently shown to selectively infect and destroy tumor cells with great potency, while sparing normal cells, both in cell cultures and in animal models. Since vaccinia virus has long been recognized as an ideal backbone for vaccines due to its potent antigen presentation capability, this combines well with its natural oncolytic activities as an oncolytic virus for cancer immunotherapy.[54]

Vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is a rhabdovirus, consisting of 5 genes encoded by a negative sense, single-stranded RNA genome. In nature, VSV infects insects as well as livestock, where it causes a relatively localized and non-fatal illness. The low pathogenicity of this virus is due in large part to its sensitivity to interferons, a class of proteins that are released into the tissues and bloodstream during infection. These molecules activate genetic anti-viral defence programs that protect cells from infection and prevent spread of the virus. However, in 2000, Stojdl, Lichty et al.[55] demonstrated that defects in these pathways render cancer cells unresponsive to the protective effects of interferons and therefore highly sensitive to infection with VSV. Since VSV undergoes a rapid cytolytic replication cycle, infection leads to death of the malignant cell and roughly a 1000-fold amplification of virus within 24h. VSV is therefore highly suitable for therapeutic application, and several groups have gone on to show that systemically administered VSV can be delivered to a tumour site, where it replicates and induces disease regression, often leading to durable cures.[56][57][58][59] Attenuation of the virus by engineering a deletion of Met-51 of the matrix protein ablates virtually all infection of normal tissues, while replication in tumour cells is unaffected.[56]

Recent research has shown that this virus has the potential to cure brain tumours, thanks to its oncolytic properties.[60]

Poliovirus

malignant glioma cells, while leaving normal neuronal cells untouched.[62]

Reovirus

Reoviruses generally infect mammalian respiratory and bowel systems (the name deriving from an acronym, respiratory enteric orphan virus). Most people have been exposed to reovirus by adulthood; however, the infection does not typically produce symptoms. The reovirus' oncolytic potential was established after they were discovered to reproduce well in various cancer cell lines, lysing these cells.[63]

Reolysin is a formulation of reovirus intended to treat various cancers currently undergoing clinical trials.[64]

Senecavirus

Senecavirus, also known as Seneca Valley Virus, is a naturally occurring wild-type oncolytic picornavirus discovered in 2001 as a tissue culture contaminate at Genetic Therapy, Inc. The initial isolate, SVV-001, is being developed as an anti-cancer therapeutic by Neotropix, Inc. under the name NTX-010 for cancers with neuroendocrine features including small cell lung cancer and a variety of pediatric solid tumours.[citation needed
]

RIGVIR

RIGVIR is a drug that was approved by the State Agency of Medicines of the Republic of Latvia in 2004.[65] It was also approved in Georgia[66] and Armenia.[67] It is wild type ECHO-7, a member of echovirus group.[68] The potential use of echovirus as an oncolytic virus to treat cancer was discovered by Latvian scientist Aina Muceniece in the 1960s and 1970s.[68] The data used to register the drug in Latvia is not sufficient to obtain approval to use it in the US, Europe, or Japan.[68][69] As of 2017 there was no good evidence that RIGVIR is an effective cancer treatment.[70][71] On 19 March 2019, the manufacturer of ECHO-7, SIA LATIMA, announced the drug's removal from sale in Latvia, quoting financial and strategic reasons and insufficient profitability.[72] However, several days later an investigative TV show revealed that State Agency of Medicines had run laboratory tests on the vials, and found that the amount of ECHO-7 virus is of a much smaller amount than claimed by the manufacturer. According to agency's lab director, "It's like buying what you think is lemon juice, but finding that what you have is lemon-flavored water". In March 2019, the distribution of ECHO-7 in Latvia has been stopped.[73] Based on the request of some patients, medical institutions and physicians were allowed to continue use despite the suspension of the registration certificate.[74]

Semliki Forest virus

pre-clinically tested as an oncolytic virus against the severe brain tumour type glioblastoma. The SFV was genetically modified with microRNA target sequences so that it only replicated in brain tumour cells and not in normal brain cells. The modified virus reduced tumour growth and prolonged survival of mice with brain tumours.[75] The modified virus was also found to efficiently kill human glioblastoma tumour cell lines.[75]

Other

The maraba virus, first identified in Brazilian sandflies, is being tested clinically.[76]

Coxsackievirus A21 is being developed by Viralytics under trade name Cavatak.[77] Coxsackievirus A21 belongs to Enterovirus C species.[78]

Sendai virus in scientific literature, has shown some oncolytic properties that are decibed in the section Murine respirovirus as an oncolytic agent
.

Engineering oncolytic viruses

Directed evolution

An innovative approach of drug development termed "directed evolution" involves the creation of new viral variants or serotypes specifically directed against tumour cells via rounds of directed selection using large populations of randomly generated recombinant precursor viruses. The increased biodiversity produced by the initial homologous recombination step provides a large random pool of viral candidates which can then be passed through a series of selection steps designed to lead towards a pre-specified outcome (e.g. higher tumor specific activity) without requiring any previous knowledge of the resultant viral mechanisms that are responsible for that outcome. The pool of resultant oncolytic viruses can then be further screened in pre-clinical models to select an oncolytic virus with the desired therapeutic characteristics.[81]

Directed evolution was applied on human

ColoAd1 (a novel chimeric member of the group B adenoviruses) was generated. This hybrid of adenovirus serotypes Ad11p and Ad3 shows much higher potency and tumour selectivity than the control viruses (including Ad5, Ad11p and Ad3) and was confirmed to generate approximately two logs more viral progeny on freshly isolated human colon tumour tissue than on matching normal tissue.[81]

Attenuation

Attenuation involves deleting viral genes, or gene regions, to eliminate viral functions that are expendable in tumour cells, but not in normal cells, thus making the virus safer and more tumour-specific. Cancer cells and virus-infected cells have similar alterations in their cell signalling pathways, particularly those that govern progression through the cell cycle.[82] A viral gene whose function is to alter a pathway is dispensable in cells where the pathway is defective, but not in cells where the pathway is active.[citation needed]

The enzymes thymidine kinase and ribonucleotide reductase in cells are responsible for DNA synthesis and are only expressed in cells which are actively replicating.[83] These enzymes also exist in the genomes of certain viruses (E.g. HSV, vaccinia) and allow viral replication in quiescent(non-replicating) cells,[84] so if they are inactivated by mutation the virus will only be able to replicate in proliferating cells, such as cancer cells.

Tumour targeting

There are two main approaches for generating tumour selectivity: transductional and non-transductional targeting.[85]

  • Transductional targeting involves modifying the viral coat proteins to target tumour cells while reducing entry to non-tumour cells. This approach to tumour selectivity has mainly focused on adenoviruses and HSV-1, although it is entirely viable with other viruses.[85]
  • Non-transductional targeting involves altering the genome of the virus so it can only replicate in cancer cells, most frequently as part of the attenuation of the virus.[85]
    • promoter. A suitable promoter should be active in the tumour but inactive in the majority of normal tissue, particularly the liver, which is the organ that is most exposed to blood born viruses. Many such promoters have been identified and studied for the treatment of a range of cancers.[85]
    • Similarly, viral replication can be finely tuned with the use of microRNAs (miRNA) artificial target sites or miRNA response elements (MREs). Differential expression of miRNAs between healthy tissues and tumors permit to engineer oncolytic viruses detargeted from certain tissues of interest while allowing its replication in the tumor cells.[citation needed]

Double targeting with both transductional and non-transductional targeting methods is more effective than any one form of targeting alone.[86]

Reporter genes

Viral luciferase expression in a mouse tumour

Both in the laboratory and in the clinic it is useful to have a simple means of identifying cells infected by the experimental virus. This can be done by equipping the virus with "reporter genes" not normally present in viral genomes, which encode easily identifiable protein markers. One example of such proteins is GFP (green fluorescent protein) which, when present in infected cells, will cause a fluorescent green light to be emitted when stimulated by blue light.[87][88] An advantage of this method is that it can be used on live cells and in patients with superficial infected lesions, it enables rapid non-invasive confirmation of viral infection.[89] Another example of a visual marker useful in living cells is luciferase, an enzyme from the firefly which in the presence of luciferin, emits light detectable by specialized cameras.[87]

Vaccinia virus infected cells expressing beta-glucuronidase (blue colour)

The

beta-galactosidase can also be encoded by some viruses. These enzymes, in the presence of certain substrates, can produce intense colored compounds useful for visualizing infected cells and also for quantifying gene expression.[citation needed
]

Modifications to improve oncolytic activity

Oncolytic viruses can be used against cancers in ways that are additional to lysis of infected cells.

Suicide genes

Viruses can be used as vectors for delivery of suicide genes, encoding enzymes that can metabolise a separately administered non-toxic

pro-drug, ganciclovir, which is then incorporated into DNA, blocking DNA synthesis.[90] The tumour selectivity of oncolytic viruses ensures that the suicide genes are only expressed in cancer cells, however a "bystander effect" on surrounding tumour cells has been described with several suicide gene systems.[91]

Suppression of angiogenesis

Angiogenesis (blood vessel formation) is an essential part of the formation of large tumour masses. Angiogenesis can be inhibited by the expression of several genes, which can be delivered to cancer cells in viral vectors, resulting in suppression of angiogenesis, and oxygen starvation in the tumour. The infection of cells with viruses containing the genes for angiostatin and endostatin synthesis inhibited tumour growth in mice. Enhanced antitumour activities have been demonstrated in a recombinant vaccinia virus encoding anti-angiogenic therapeutic antibody and with an HSV1716 variant expressing an inhibitor of angiogenesis.[92][93]

Radioiodine

Adenoviral NIS gene expression in a mouse tumour (Located at the crosshairs) following intravenous delivery of virus (Left) compared to an uninfected control mouse (Right)

Addition of the

radioiodine therapy it allows local radiotherapy of the tumour, as used to treat thyroid cancer. The radioiodine can also be used to visualise viral replication within the body by the use of a gamma camera.[87] This approach has been used successfully preclinically with adenovirus, measles virus and vaccinia virus.[94][95][96]

Approved therapeutic agents

  • US FDA approved T-VEC, with the brand name Imlygic, for the treatment of melanoma in patients with inoperable tumors.[98] becoming the first approved oncolytic agent in the western world.[99] It is based on herpes simplex virus (HSV-1).[100] It has also been tested in a Phase I trial for pancreatic cancer and a Phase III trial in head and neck cancer together with cisplatin chemotherapy and radiotherapy.[101]
  • Teserpaturev (G47∆), aka Delytact by Daiichi Sankyo is a first oncolytic virus therapy approved by Japan Ministry of Health, Labour and Welfare (MHLW). Delytact is a genetically engineered oncolytic herpes simplex virus type 1 (HSV-1) approved for treatment of malignant glioma in Japan.[102]

Oncolytic viruses in conjunction with existing cancer therapies

It is in conjunction with conventional cancer therapies that oncolytic viruses have often showed the most promise, since combined therapies operate synergistically with no apparent negative effects.[103]

Clinical trials

Onyx-015 (dl1520) underwent trials in conjunction with chemotherapy before it was abandoned in the early 2000s. The combined treatment gave a greater response than either treatment alone, but the results were not entirely conclusive.[104] Vaccinia virus GL-ONC1 was studied in a trial combined with chemo- and radiotherapy as Standard of Care for patients newly diagnosed with head & neck cancer.[105] Herpes simplex virus, adenovirus, reovirus and murine leukemia virus are also undergoing clinical trials as a part of combination therapies.[106]

Pre-clinical research

Chen et al. (2001)

radiotherapy on prostate cancer in mice. The combined treatment resulted in a synergistic increase in cell death, as well as a significant increase in viral burst size (the number of virus particles released from each cell lysis). No alteration in viral specificity was observed.[citation needed
]

SEPREHVIR (HSV-1716) has also shown synergy in pre-clinical research when used in combination with several cancer chemotherapies.[108][109]

The anti-angiogenesis drug bevacizumab (anti-VEGF antibody) has been shown to reduce the inflammatory response to oncolytic HSV and improve virotherapy in mice.[110] A modified oncolytic vaccinia virus encoding a single-chain anti-VEGF antibody (mimicking bevacizumab) was shown to have significantly enhanced antitumor activities than parental virus in animal models.[111]

In fiction

In science fiction, the concept of an oncolytic virus was first introduced to the public in Jack Williamson's novel Dragon's Island, published in 1951, although Williamson's imaginary virus was based on a bacteriophage rather than a mammalian virus.[112] Dragon's Island is also known for being the source of the term "genetic engineering".[113]

The plot of the Hollywood film I Am Legend is based on the premise that a worldwide epidemic was caused by a viral cure for cancer.[114]

See also

References

  1. PMID 22400027
    .
  2. .
  3. .
  4. .
  5. .
  6. ^ "Using Viruses to Treat Cancer | Science-Based Medicine". sciencebasedmedicine.org. 28 September 2022. Retrieved 4 November 2022.
  7. S2CID 6123610
    .
  8. .
  9. .
  10. .
  11. ^ "Rigvir šķīdums injekcijām". Medicinal product register of the Republic of Latvia. 29 April 2004. Retrieved 8 December 2016.
  12. ^
    PMID 18183014
    .
  13. ^ Broderick J (29 April 2015). "FDA Panels Support Approval of T-VEC in Melanoma". OncLive. Retrieved 24 August 2015.
  14. ^ Research, Center for Drug Evaluation and (29 December 2022). "FDA approves first adenoviral vector-based gene therapy for high-risk Bacillus Calmette-Guérin unresponsive non-muscle invasive bladder cancer". FDA.
  15. ^
    PMID 15917655
    .
  16. ^ .
  17. ^ .
  18. ^ .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. ^ .
  37. .
  38. .
  39. ^ .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. ISBN 978-0-943951-17-1. Archived from the original on 21 March 2015. Retrieved 31 March 2013.[page needed
    ]
  51. ]
  52. .
  53. .
  54. ^ "Oncolytic Viruses in cancer therapy". Retrieved 11 April 2023.
  55. S2CID 8492631
    .
  56. ^ .
  57. .
  58. .
  59. .
  60. .
  61. .
  62. .
  63. .
  64. .
  65. ^ "Latvijas Zāļu reģistrs". www.zva.gov.lv. Retrieved 17 December 2017.
  66. ^ "Georgia Today". Archived from the original on 28 March 2019. Retrieved 23 September 2015.
  67. ^ "Latvian Rigvir anti-cancer medicine registered in Armenia". The Baltic Course. 11 May 2016. Retrieved 3 January 2018.
  68. ^
    PMID 28224120
    .
  69. ^ "Feasibility study for registration of medicine RIGVIR with the European Medicine Agency". European Commission. 8 January 2016. Archived from the original on 2 November 2016. Retrieved 2 November 2016. However, further use and commercialisation in the EU is prevented as EU regulations require cancer medicines to be registered centrally through the European Medicine Agency (EMA). National registrations are not considered.
  70. ^ Gorski D (18 September 2017). "Rigvir: Another unproven and dubious cancer therapy to be avoided". Science-Based Medicine.
  71. ^ Gorski, David (25 September 2017). "Ty Bollinger's "The Truth About Cancer" and the unethical marketing of the unproven cancer virotherapy Rigvir". Science-Based Medicine.
  72. ^ "Rigvir medication distribution in Latvia halted temporarily". 19 March 2019.
  73. ^ "Rigvir cancer treatment at center of fresh controversy". eng.lsm.lv.
  74. ^ "Apturēta Rigvir reģistrācija; informācija esošajiem pacientiem | Zāļu valsts aģentūra".
  75. ^
    PMID 27637889
    .
  76. ^ Clinical trial number NCT02285816 for "MG1 Maraba/MAGE-A3, With and Without Adenovirus Vaccine, With Transgenic MAGE-A3 Insertion in Patients With Incurable MAGE-A3-Expressing Solid Tumours (I214)" at ClinicalTrials.gov
  77. PMID 31273010
    .
  78. .
  79. ^ Dock, George. "The influence of complicating diseases upon leukaemia". The American Journal of the Medical Sciences (1827-1924); Philadelphia. 127 (4).
  80. PMID 32542113
    .
  81. ^ .
  82. ^ Chow AY. "Cell Cycle Control by Oncogenes and Tumor Suppressors: Driving the Transformation of Normal Cells into Cancerous Cells". Nature Education. 3 (9): 7. Retrieved 5 April 2013.
  83. ^ "Thymidine kinase". Medical Dictionary. Merriam-Webster. Retrieved 5 April 2013.
  84. PMID 1334563
    .
  85. ^ .
  86. .
  87. ^ .
  88. .
  89. .
  90. .
  91. .
  92. .
  93. .
  94. .
  95. .
  96. .
  97. ^ Clinical trial number NCT00769704 for "Efficacy and Safety Study of OncoVEXGM-CSF Compared to GM-CSF in Melanoma" at ClinicalTrials.gov
  98. ^ "FDA approves Amgen's Injected Immunotherapy for Melanoma". Reuters. 27 October 2015.
  99. S2CID 205268968
    .
  100. ^ "Amgen, Form 8-K, Current Report, Filing Date Jan 26, 2012" (PDF). secdatabase.com. Retrieved 8 January 2013.
  101. ^ Clinical trial number NCT01161498 for "Study of Safety and Efficacy of OncoVEXGM-CSF With Cisplatin for Treatment of Locally Advanced Head and Neck Cancer" at ClinicalTrials.gov
  102. ^ "Delytact scores a first with Japanese approval for malignant glioma". www.thepharmaletter.com. Retrieved 21 December 2022.
  103. PMID 20029399
    .
  104. .
  105. .
  106. .
  107. .
  108. .
  109. .
  110. .
  111. .
  112. ]
  113. .
  114. ^ Dalhousie University (9 May 2008). "A Real-life 'I Am Legend?' Researcher Champions Development Of 'Reovirus' As Potential Treatment For Cancer". Science Daily.

Further reading