Opcode

Source: Wikipedia, the free encyclopedia.

In

byte code
specifications.

Overview

Specifications and format of the opcodes are laid out in the instruction set architecture (ISA) of the processor in question, which may be a general CPU or a more specialized processing unit.[10] Opcodes for a given instruction set can be described through the use of an opcode table detailing all possible opcodes. Apart from the opcode itself, an instruction normally also has one or more specifiers for operands (i.e. data) on which the operation should act, although some operations may have implicit operands, or none at all.[10] There are instruction sets with nearly uniform fields for opcode and operand specifiers, as well as others (the x86 architecture for instance) with a more complicated, variable-length structure.[10][11] Instruction sets can be extended through the use of opcode prefixes which add a subset of new instructions made up of existing opcodes following reserved byte sequences.[citation needed]

Operands

Depending on architecture, the operands may be

logical operations, and program control, as well as special instructions (such as CPUID and others).[10]

Assembly language, or just assembly, is a low-level programming language, which uses mnemonic instructions and operands to represent machine code.[10] This enhances the readability while still giving precise control over the machine instructions. Most programming is currently done using high-level programming languages,[12] which are typically easier for humans to understand and write.[10] These languages need to be compiled (translated into assembly language) by a system-specific compiler, or run through other compiled programs.[13]

Software instruction sets

Opcodes can also be found in so-called

byte codes and other representations intended for a software interpreter rather than a hardware device. These software-based instruction sets often employ slightly higher-level data types and operations than most hardware counterparts, but are nevertheless constructed along similar lines. Examples include the byte code found in Java class files which are then interpreted by the Java Virtual Machine (JVM), the byte code used in GNU Emacs for compiled Lisp code, .NET Common Intermediate Language (CIL), and many others.[14]

See also

References

  1. ^
    LCCN 78-19961
    . (xii+100 pages)
  2. ^ a b Chiba, Shigeru (2007) [1999]. "Javassist, a Java-bytecode translator toolkit". Archived from the original on 2020-03-02. Retrieved 2016-05-27.
  3. Intel Corporation. December 1973. pp. B-1–B-8. MCS-030-1273-1. Archived
    (PDF) from the original on 2020-03-01. Retrieved 2020-03-02.
  4. (PDF) from the original on 2020-03-03. Retrieved 2020-03-03. […] Each operation that the processor can perform is identified by a unique binary number known as an instruction code. […]
  5. .
  6. from the original on 2020-03-02. Retrieved 2016-05-28.
  7. ^ Smotherman, Mark (2016) [2013]. "Multiple Instruction Issue". School of Computing, Clemson University. Archived from the original on 2016-05-28. Retrieved 2016-05-28.
  8. The University of Iowa, Department of Computer Science. Archived
    from the original on 2020-03-02. Retrieved 2016-05-28.
  9. from the original on 2020-03-02. Retrieved 2016-05-28.
  10. ^ .
  11. from the original on 2008-02-13. Retrieved 2016-05-28.
  12. ^ "Programming Language Popularity". langpop.com. 2013-10-25. Archived from the original on 2015-04-11. Retrieved 2015-10-10.
  13. ^ Swanson, William (2001). "Introduction to Assembly Language". Swanson Technologies. Archived from the original on 2020-03-02. Retrieved 2015-10-10.
  14. PC Magazine. PC Magazine Encyclopedia. Archived from the original
    on 2012-10-06. Retrieved 2015-10-10.

Further reading

This page is based on the copyrighted Wikipedia article: Opcode. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy