OpenAI Codex
OpenAI Codex is an
OpenAI released an
Capabilities
Based on GPT-3, a neural network trained on text, Codex was additionally trained on 159 gigabytes of Python code from 54 million GitHub repositories.[5][6] A typical use case of Codex is for a user to type a comment, such as "//compute the moving average of an array for a given window size
", then use the AI to suggest a block of code that satisfies that comment prompt.[7] OpenAI stated that Codex can complete approximately 37% of requests and is meant to make human programming faster rather than to replace it. According to OpenAI's blog, Codex excels most at "mapping... simple problems to existing code", which they describe as "probably the least fun part of programming".[8][9] Jeremy Howard, co-founder of Fast.ai, stated that "Codex is a way of getting code written without having to write as much code", and that "it is not always correct, but it is just close enough".[10] According to a paper written by OpenAI researchers, when Codex attempted each test case 100 times, it generated working solutions for 70.2% of prompts.[11]
OpenAI claims that Codex can create code in over a dozen programming languages, including
A very powerful language model called OpenAI Codex was created expressly to generate code in response to natural language commands. It is capable of understanding and producing code in a multitude of areas because it is compatible with a large number of programming languages and libraries. Codex is a useful tool for developers who want to optimize their coding processes because it can debug, parse natural language inquiries, and provide code completions.[12]
OpenAI showed that Codex can interface with services and apps such as Mailchimp, Microsoft Word, Spotify, and Google Calendar.[9][13]
Issues
OpenAI demonstrations showcased flaws such as inefficient code and one-off quirks in code samples.[9] In an interview with The Verge, OpenAI chief technology officer Greg Brockman said that "sometimes [Codex] doesn't quite know exactly what you're asking" and that it can require some trial and error.[13] OpenAI researchers found that Codex struggles with multi-step prompts, often failing or yielding counter-intuitive behavior. Additionally, they brought up several safety issues, such as over-reliance by novice programmers, biases based on the training data, and security impacts due to vulnerable code.[11]
VentureBeat stated that because Codex is trained on public data, it could be vulnerable to "data poisoning" via intentional uploads of malicious code.[9] According to a study by researchers from New York University, approximately 40% of code generated by GitHub Copilot (which uses Codex) in scenarios relevant to high-risk CWEs included glitches or other exploitable design flaws.[14]
Copyright
The
In response, OpenAI stated that "legal uncertainty on the copyright implications of training AI systems imposes substantial costs on AI developers and so should be authoritatively resolved."[7]
The copyright issues with Codex have been compared to the Authors Guild, Inc. v. Google, Inc. court case, in which judges ruled that Google Books's use of text snippets from millions of scanned books constituted fair use.[7][17] However, use of text snippets from books provides for a reliable reference of the copyright owner, as opposed to compiled works used for the training algorithm data where the final output is made without any such reference.
References
- ^ a b c Zaremba, Wojciech (August 10, 2021). "OpenAI Codex". OpenAI. Archived from the original on 2023-02-03. Retrieved 2021-09-03.
- ^ Kemper, Jonathan (2023-03-22). "OpenAI kills its Codex code model, recommends GPT3.5 instead". THE DECODER. Archived from the original on 2023-06-01. Retrieved 2023-03-29.
- ^ Logan Kilpatrick [@OfficialLoganK] (March 22, 2023). "Hey Carolyn, we will continue to support Codex access via our Researcher Access Program. Sorry for any confusion and hopefully the research is going well!" (Tweet). Retrieved 2023-04-08 – via Twitter.
- ^ "Researcher Access Program application". openai.com. Archived from the original on 2023-10-10. Retrieved 2023-04-08.
- ^ Wiggers, Kyle (July 8, 2021). "OpenAI warns AI behind GitHub's Copilot may be susceptible to bias". VentureBeat. Archived from the original on 2023-02-03. Retrieved 2021-09-03.
- ^ Alford, Anthony (August 31, 2021). "OpenAI Announces 12 Billion Parameter Code-Generation AI Codex". InfoQ. Archived from the original on 2022-07-09. Retrieved 2021-09-03.
- ^ a b c d Anderson, Tim; Quach, Katyanna (July 6, 2021). "GitHub Copilot auto-coder snags emerge, from seemingly spilled secrets to bad code, but some love it". The Register. Archived from the original on 2023-06-02. Retrieved 2021-09-04.
- SingularityHub. Archivedfrom the original on 2023-05-26. Retrieved 2021-09-03.
- ^ a b c d e Dickson, Ben (August 16, 2021). "What to expect from OpenAI's Codex API". VentureBeat. Archived from the original on 2023-02-03. Retrieved 2021-09-03.
- ^ Metz, Cade (September 9, 2021). "A.I. Can Now Write Its Own Computer Code. That's Good News for Humans". The New York Times. Archived from the original on 2022-03-30. Retrieved 2021-09-16.
- ^ arXiv:2107.03374 [cs].
- ^ "Best AI Headshot Generators". Retrieved 2024-03-12.
- ^ a b Vincent, James (August 10, 2021). "OpenAI can translate English into code with its new machine learning software Codex". The Verge. Archived from the original on 2021-09-02. Retrieved 2021-09-03.
- arXiv:2108.09293 [cs.CR].
- ^ a b Krill, Paul (August 2, 2021). "GitHub Copilot is 'unacceptable and unjust,' says Free Software Foundation". InfoWorld. Archived from the original on 2021-09-03. Retrieved 2021-09-03.
- ^ Robertson, Donald (2021-07-28). "FSF-funded call for white papers on philosophical and legal questions around Copilot: Submit before Monday, August 23, 2021". Free Software Foundation. Archived from the original on 2021-08-11. Retrieved 2021-09-04.
- WIRED. Archivedfrom the original on 2021-07-25. Retrieved 2021-09-04.