Ornithology

Source: Wikipedia, the free encyclopedia.
(Redirected from
Ornithologist
)
A marbled godwit being ringed for studies on bird migration

Ornithology is a branch of

island biogeography, phylogeography, and conservation.[3]

While early ornithology was principally concerned with descriptions and distributions of species, ornithologists today seek answers to very specific questions, often using birds as models to test hypotheses or predictions based on theories. Most modern biological theories apply across life forms, and the number of scientists who identify themselves as "ornithologists" has therefore declined.[4] A wide range of tools and techniques are used in ornithology, both inside the laboratory and out in the field, and innovations are constantly made. Most biologists who recognise themselves as "ornithologists" study specific biology research areas, such as anatomy, physiology, taxonomy, ecology, or behaviour.[5]

Definition and etymology

Cotingidae

The word "ornithology" comes from the late 16th-century Latin ornithologia meaning "bird science" from the Greek ὄρνις ornis ("bird") and λόγος logos ("theory, science, thought").[6]

History

The history of ornithology largely reflects the trends in the history of biology, as well as many other scientific disciplines, including ecology, anatomy, physiology, paleontology, and more recently, molecular biology. Trends include the move from mere descriptions to the identification of patterns, thus towards elucidating the processes that produce these patterns.

Early knowledge and study

Humans have had an observational relationship with birds since

Oronsay off the coast of Scotland.[7]

Geese from a wall panel from the tomb of Nefermaat, Egypt c. 2575–2551 B.C.

Cultures around the world have rich vocabularies related to birds.

brood parasitism by the Asian koel (Eudynamys scolopaceus).[19] Like writing, the early art of China, Japan, Persia, and India also demonstrate knowledge, with examples of scientifically accurate bird illustrations.[20]

Topographia Hiberniae (1187).[24] Around 77 AD, Pliny the Elder described birds, among other creatures, in his Historia Naturalis.[25]

The earliest record of falconry comes from the reign of Sargon II (722–705 BC) in

Kitāb al-Ḥayawān of 1027 for the Emperor, a commentary and scientific update of Aristotle's work which was part of Ibn Sīnā's massive Kitāb al-Šifāʾ. Frederick II eventually wrote his own treatise on falconry, the De arte venandi cum avibus, in which he related his ornithological observations and the results of the hunts and experiments his court enjoyed performing.[26][27]

Several early German and French scholars compiled old works and conducted new research on birds. These included

Konrad Gesner wrote the Vogelbuch and Icones avium omnium around 1557. Like Gesner, Ulisse Aldrovandi, an encyclopedic naturalist, began a 14-volume natural history with three volumes on birds, entitled ornithologiae hoc est de avibus historiae libri XII, which was published from 1599 to 1603. Aldrovandi showed great interest in plants and animals, and his work included 3000 drawings of fruits, flowers, plants, and animals, published in 363 volumes. His Ornithology alone covers 2000 pages and included such aspects as the chicken and poultry techniques. He used a number of traits including behaviour, particularly bathing and dusting, to classify bird groups.[30][31][32]

Cover of Ulisse Aldrovandi's Ornithology, 1599
Antonio Valli da Todi, who wrote on aviculture in 1601, knew the connections between territory and song[33]

William Turner's Historia Avium (History of Birds), published at Cologne in 1544, was an early ornithological work from England. He noted the commonness of kites in English cities where they snatched food out of the hands of children. He included folk beliefs such as those of anglers. Anglers believed that the osprey emptied their fishponds and would kill them, mixing the flesh of the osprey into their fish bait. Turner's work reflected the violent times in which he lived, and stands in contrast to later works such as Gilbert White's 1789 The Natural History and Antiquities of Selborne that were written in a tranquil era.[28][34]

In the 17th century,

Sir Thomas Browne (1605–82), who not only answered his queries on ornithological identification and nomenclature, but also those of Willoughby and Merrett in letter correspondence. Browne himself in his lifetime kept an eagle, owl, cormorant, bittern, and ostrich, penned a tract on falconry, and introduced the words "incubation" and "oviparous" into the English language.[37][38]

An Experiment on a Bird in the Air Pump, Joseph Wright of Derby, 1768

Towards the late 18th century,

The Birds of America, which was engraved by Robert Havell Sr.
and his son Robert Havell Jr. Containing 435 engravings, it is often regarded as the greatest ornithological work in history.

Scientific studies

Early bird study focused on collectibles such as eggs and nests.

The emergence of ornithology as a scientific discipline began in the 18th century, when

The Ibis. The sudden spurt in ornithology was also due in part to colonialism. At 100 years later, in 1959, R. E. Moreau noted that ornithology in this period was preoccupied with the geographical distributions of various species of birds.[42]

No doubt the preoccupation with widely extended geographical ornithology, was fostered by the immensity of the areas over which British rule or influence stretched during the 19th century and for some time afterwards.

The bird collectors of the Victorian era observed the variations in bird forms and habits across geographic regions, noting local specialization and variation in widespread species. The collections of museums and private collectors grew with contributions from various parts of the world. The naming of species with binomials and the organization of birds into groups based on their similarities became the main work of museum specialists. The variations in widespread birds across geographical regions caused the introduction of trinomial names.

Kaup's classification of the crow family

The search for patterns in the variations of birds was attempted by many.

Hans Gadow and others.[46][47]

The

Philip Lutley Sclater on the distribution patterns of birds.[48]

Quinarian system of bird classification by Swainson

For Darwin, the problem was how species arose from a common ancestor, but he did not attempt to find rules for delineation of species. The

species problem was tackled by the ornithologist Ernst Mayr, who was able to demonstrate that geographical isolation and the accumulation of genetic differences led to the splitting of species.[49][50]

Early ornithologists were preoccupied with matters of species identification. Only systematics counted as true science and field studies were considered inferior through much of the 19th century.[51] In 1901, Robert Ridgway wrote in the introduction to The Birds of North and Middle America that:

There are two essentially different kinds of ornithology: systematic or scientific, and popular. The former deals with the structure and classification of birds, their synonymies, and technical descriptions. The latter treats of their habits, songs, nesting, and other facts pertaining to their life histories.

This early idea that the study of living birds was merely recreation held sway until ecological theories became the predominant focus of ornithological studies.

Claud Ticehurst
wrote:

Sometimes it seems that elaborate plans and statistics are made to prove what is commonplace knowledge to the mere collector, such as that hunting parties often travel more or less in circles.

— Ticehurst[42]

David Lack's studies on population ecology sought to find the processes involved in the regulation of population based on the evolution of optimal clutch sizes. He concluded that population was regulated primarily by

density-dependent controls, and also suggested that natural selection produces life-history traits that maximize the fitness of individuals. Others, such as Wynne-Edwards, interpreted population regulation as a mechanism that aided the "species" rather than individuals. This led to widespread and sometimes bitter debate on what constituted the "unit of selection".[49] Lack also pioneered the use of many new tools for ornithological research, including the idea of using radar to study bird migration.[54]

Birds were also widely used in studies of the niche hypothesis and

Robert MacArthur.[49] These studies led to the development of the discipline of landscape ecology
.

A mounted specimen of a red-footed falcon

cost-benefit analyses.[57] The rising interest in sociobiology also led to a spurt of bird studies in this area.[49][58]

The study of imprinting behaviour in ducks and geese by

bird songs has been a model for studies in neuroethology. The study of hormones and physiology in the control of behaviour has also been aided by bird models. These have helped in finding the proximate causes of circadian and seasonal cycles. Studies on migration have attempted to answer questions on the evolution of migration, orientation, and navigation.[49]

The growth of genetics and the rise of molecular biology led to the application of the gene-centered view of evolution to explain avian phenomena. Studies on kinship and altruism, such as helpers, became of particular interest. The idea of inclusive fitness was used to interpret observations on behaviour and life history, and birds were widely used models for testing hypotheses based on theories postulated by W. D. Hamilton and others.[49]

The new tools of molecular biology changed the study of bird systematics, which changed from being based on

Sibley-Ahlquist taxonomy. These early techniques have been replaced by newer ones based on mitochondrial DNA sequences and molecular phylogenetics approaches that make use of computational procedures for sequence alignment, construction of phylogenetic trees, and calibration of molecular clocks to infer evolutionary relationships.[59][60] Molecular techniques are also widely used in studies of avian population biology and ecology.[61]

Rise to popularity

The use of

field glasses or telescopes for bird observation began in the 1820s and 1830s, with pioneers such as J. Dovaston (who also pioneered in the use of bird feeders), but instruction manuals did not begin to insist on the use of optical aids such as "a first-class telescope" or "field glass" until the 1880s.[62][63]

Florence Augusta Merriam Bailey

The rise of field guides for the identification of birds was another major innovation. The early guides such as

Audubon Magazine.[52] These were followed by new field guides,[64]
from the pioneering illustrated handbooks of
Field Guide to the Birds by Roger Tory Peterson in 1934, to Birds of the West Indies published in 1936 by Dr. James Bond - the same who inspired the amateur ornithologist Ian Fleming in naming his famous literary spy.[65]

The interest in

The Auk, noting the tensions between amateurs and professionals, and suggested the possibility that the "vast army of bird lovers and bird watchers could begin providing the data scientists needed to address the fundamental problems of biology."[66][67] The amateur ornithologist Harold F. Mayfield noted that the field was also funded by non-professionals. He noted that in 1975, 12% of the papers in American ornithology journals were written by persons who were not employed in biology related work.[68]

Organizations were started in many countries, and these grew rapidly in membership, most notable among them being the

Audubon Society in the US, which started in 1885. Both these organizations were started with the primary objective of conservation. The RSPB, born in 1889, grew from a small Croydon-based group of women, including Eliza Phillips, Etta Lemon, Catherine Hall and Hannah Poland. Calling themselves the "Fur, Fin, and Feather Folk", the group met regularly and took a pledge "to refrain from wearing the feathers of any birds not killed for the purpose of food, the ostrich only exempted." The organization did not allow men as members initially, avenging a policy of the British Ornithologists' Union to keep out women.[40] Unlike the RSPB, which was primarily conservation oriented, the British Trust for Ornithology was started in 1933 with the aim of advancing ornithological research. Members were often involved in collaborative ornithological projects. These projects have resulted in atlases which detail the distribution of bird species across Britain.[4] In Canada, citizen scientist Elsie Cassels studied migratory birds and was involved in establishing Gaetz Lakes bird sanctuary.[69] In the United States, the Breeding Bird Surveys, conducted by the United States Geological Survey, have also produced atlases with information on breeding densities and changes in the density and distribution over time. Other volunteer collaborative ornithology projects were subsequently established in other parts of the world.[70]

Techniques

The tools and techniques of ornithology are varied, and new inventions and approaches are quickly incorporated. The techniques may be broadly dealt under the categories of those that are applicable to specimens and those that are used in the field, but the classification is rough and many analysis techniques are usable both in the laboratory and field or may require a combination of field and laboratory techniques.

Collections

Bird-preservation techniques

The earliest approaches to modern bird study involved the collection of eggs, a practice known as oology. While collecting became a pastime for many amateurs, the labels associated with these early egg collections made them unreliable for the serious study of bird breeding. To preserve eggs, a tiny hole was made and the contents extracted. This technique became standard with the invention of the blow drill around 1830.[40] Egg collection is no longer popular; however, historic museum collections have been of value in determining the effects of pesticides such as DDT on physiology.[71][72] Museum bird collections continue to act as a resource for taxonomic studies.[73]

Morphometric measurements of birds are important in systematics.

The use of bird skins to document species has been a standard part of systematic ornithology. Bird skins are prepared by retaining the key bones of the wings, legs, and skull along with the skin and feathers. In the past, they were treated with

Bulo Burti boubou (Laniarius liberatus, no longer a valid species) and the Bugun liocichla (Liocichla bugunorum), using blood, DNA and feather samples as the holotype
material, has now become possible.

Other methods of preservation include the storage of specimens in spirit. Such wet specimens have special value in physiological and anatomical study, apart from providing better quality of DNA for molecular studies.[74] Freeze drying of specimens is another technique that has the advantage of preserving stomach contents and anatomy, although it tends to shrink, making it less reliable for morphometrics.[75][76]

In the field

The study of birds in the field was helped enormously by improvements in optics. Photography made it possible to document birds in the field with great accuracy. High-power spotting scopes today allow observers to detect minute morphological differences that were earlier possible only by examination of the specimen "in the hand".[77]

A bird caught in a mist net

The capture and marking of birds enable detailed studies of life history. Techniques for capturing birds are varied and include the use of

cannon netting for open-area flocking birds, the bal-chatri trap for raptors,[78] decoys and funnel traps for water birds.[79][80]

A researcher measures a wild woodpecker. The bird's right leg has a metal identification tag.

The bird in the hand may be examined and

demographic studies possible. Ringing has traditionally been used in the study of migration. In recent times, satellite transmitters provide the ability to track migrating birds in near-real time.[82]

Techniques for estimating population density include point counts, transects, and territory mapping. Observations are made in the field using carefully designed protocols and the data may be analysed to estimate bird diversity, relative abundance, or absolute population densities.[83] These methods may be used repeatedly over large timespans to monitor changes in the environment.[84] Camera traps have been found to be a useful tool for the detection and documentation of elusive species, nest predators and in the quantitative analysis of frugivory, seed dispersal and behaviour.[85][86]

In the laboratory

Many aspects of bird biology are difficult to study in the field. These include the study of behavioural and physiological changes that require a long duration of access to the bird. Nondestructive samples of blood or feathers taken during field studies may be studied in the laboratory. For instance, the variation in the ratios of stable hydrogen isotopes across latitudes makes establishing the origins of migrant birds possible using mass spectrometric analysis of feather samples.[87] These techniques can be used in combination with other techniques such as ringing.[88]

The first attenuated vaccine developed by Louis Pasteur, for fowl cholera, was tested on poultry in 1878.[89] Anti-malarials were tested on birds which harbour avian-malarias.[90] Poultry continues to be used as a model for many studies in non-mammalian immunology.[91]

Studies in bird behaviour include the use of tamed and trained birds in captivity. Studies on bird intelligence and song learning have been largely laboratory-based. Field researchers may make use of a wide range of techniques such as the use of dummy owls to elicit mobbing behaviour, and dummy males or the use of call playback to elicit territorial behaviour and thereby to establish the boundaries of bird territories.[92]

An Emlen funnel is used to study the orientation behaviour of migratory birds in a laboratory. Experimenters sometimes place the funnel inside a planetarium to study night migration.

Studies of bird migration including aspects of navigation, orientation, and physiology are often studied using captive birds in special cages that record their activities. The Emlen funnel, for instance, makes use of a cage with an inkpad at the centre and a conical floor where the ink marks can be counted to identify the direction in which the bird attempts to fly. The funnel can have a transparent top and visible cues such as the direction of sunlight may be controlled using mirrors or the positions of the stars simulated in a planetarium.[93]

The entire genome of the domestic fowl (

DRD4 (Dopamine receptor D4) which is known to be associated with novelty-seeking behaviour.[96] The role of gene expression in developmental differences and morphological variations have been studied in Darwin's finches. The difference in the expression of Bmp4 have been shown to be associated with changes in the growth and shape of the beak.[97][98]

The chicken has long been a model organism for studying vertebrate developmental biology. As the embryo is readily accessible, its development can be easily followed (unlike mice). This also allows the use of electroporation for studying the effect of adding or silencing a gene. Other tools for perturbing their genetic makeup are chicken embryonic stem cells and viral vectors.[99]

Collaborative studies

Summer distribution and abundance of Canada goose using data from the North American Breeding Bird Surveys 1994–2003

With the widespread interest in birds, use of a large number of people to work on collaborative ornithological projects that cover large geographic scales has been possible.

Breeding Bird Survey, the Canadian EPOQ[104] or regional projects such as the Asian Waterfowl Census and Spring Alive in Europe. These projects help to identify distributions of birds, their population densities and changes over time, arrival and departure dates of migration, breeding seasonality, and even population genetics.[105] The results of many of these projects are published as bird atlases. Studies of migration using bird ringing or colour marking often involve the cooperation of people and organizations in different countries.[106]

Applications

Wild birds impact many human activities, while domesticated birds are important sources of eggs, meat, feathers, and other products. Applied and economic ornithology aim to reduce the ill effects of problem birds and enhance gains from beneficial species.

Red-billed queleas are a major agricultural pest in parts of Africa.

The role of some species of birds as pests has been well known, particularly in agriculture. Granivorous birds such as the queleas in Africa are among the most numerous birds in the world, and foraging flocks can cause devastation.[107][108] Many insectivorous birds are also noted as beneficial in agriculture. Many early studies on the benefits or damages caused by birds in fields were made by analysis of stomach contents and observation of feeding behaviour.[109] Modern studies aimed to manage birds in agriculture make use of a wide range of principles from ecology.[110] Intensive aquaculture has brought humans in conflict with fish-eating birds such as cormorants.[111]

Large flocks of pigeons and starlings in cities are often considered as a nuisance, and techniques to reduce their populations or their impacts are constantly innovated.

H5N1 have been widely recognized.[114][115] Bird strikes and the damage they cause in aviation are of particularly great importance, due to the fatal consequences and the level of economic losses caused. The airline industry incurs worldwide damages of an estimated US$1.2 billion each year.[116]

Many species of birds have been driven to

ex situ conservation measures may be followed by reintroduction of the species into the wild.[120]

See also

References

  1. ^ Newton, Alfred; Lydekker, Richard; Roy, Charles S.; Shufeldt, Robert W. (1896). A dictionary of birds. London: A. and C. Black.
  2. .
  3. ^ .
  4. ^ .
  5. ISBN 978-0-19-852086-3.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  6. ^ Harper, Douglas. "ornithology". Online Etymology Dictionary.
  7. ^
    S2CID 4033666
    .
  8. ^ Anker, Jean (1979). Bird books and bird art. Springer-Science. pp. 1–5.
  9. PMID 15090648. Archived (PDF) from the original on 2022-10-09.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  10. ^ Newton, Alfred (1884). Ornithology. Reprinted from Encyclopædia Britannica (9th Ed.). [S.l. : s.n.
  11. ^ Newton, Alfred (1893–1896). A Dictionary of Birds. Adam & Charles Black, London.
  12. ^ "Hawaiian bird names". birdinghawaii.co.uk/. Archived from the original on 4 June 2009. Retrieved 11 June 2008.
  13. ^ Gill, Frank & Wright, M. (2006). Birds of the world: Recommended English Names. Princeton University Press. Archived from the original on 2008-10-20. Retrieved 2007-12-13.
  14. PMID 17547781
    .
  15. ^ Shapiro, M. "Native bird names". Richmond Audubon Society. Archived from the original on 2007-08-16. Retrieved 2007-12-01.
  16. (PDF) from the original on 2022-10-09.
  17. ^ Funk, E. M. & Irwin, M. R. (1955). Hatching Operation and Management. John Wiley & Sons.
  18. ^ Keller, Otto (1913). Die Antike Tierwelt (in German). Vol. 2. Leipzing: Wilhelm Engelmann. pp. 1–43.
  19. JSTOR 23001825
    .
  20. ^ Lack, David (1965) Enjoying Ornithology. Taylor & Francis. pp. 175–176.
  21. ^ Aristotle. Historia Animalium. Translated by D'Arcy Thompson.
  22. ^ Lincoln, Frederick C.; Peterson, Steven R.; Zimmerman, John L. (1998). Migration of birds (Report). U.S. Department of the Interior, U.S. Fish and Wildlife Service, Washington, D.C. Circular 16. Jamestown, ND: Northern Prairie Wildlife Research Center Online. Archived from the original on 2007-05-18.
  23. ^ Allen, JA (1909). "Biographical memoir of Elliott Coues" (PDF). National Academy of Sciences Biographical Memoirs. 6: 395–446. Archived (PDF) from the original on 2022-10-09.
  24. ^ Payne, S. (1929). "The Myth of the Barnacle Goose". Int. J. Psycho-Anal. 10: 218–227.
  25. S2CID 144264511
    .
  26. (PDF) from the original on 2022-10-09.
  27. ^ van Oppenraay, Aafke M.I. (2017). "Avicenna's Liber de animalibus (Abbreviatio Avicennae) - Preliminaries and State of Affairs" (PDF). Documenti e Studi Sulla Tradizione Filosofica Medievale. 28: 401–416. Archived (PDF) from the original on 2022-10-09. Retrieved 4 May 2018.
  28. ^ a b Miall, L. C. (1911). History of Biology. Watts and Co.
  29. JSTOR 1005629
    .
  30. .
  31. ^ Lind, L. R. (1963). Aldrovandi on Chickens: The Ornithology of Ulisse Aldrovandi, vol. 2, Bk xiv, translated and edited by L. R. Lind. University of Oklahoma Press.
  32. ^ Aldrovandi, Ulisse (1599). Ornithologiae.
  33. .
  34. .
  35. ^ White, Jeanne A. (1999). "Ornithology Collections in the Libraries at Cornell University: A Descriptive Guide". Retrieved 2007-12-01.
  36. S2CID 144805851
    .
  37. ^ Browne, Thomas (with notes by Thomas Southwell) (1902). Notes and Letters on the Natural History of Norfolk, more especially on the birds and fishes. London: Jarrold & Sons. pp. i–xxv.
  38. ^ Mullens, W.H. (1909). "Some early British Ornithologists and their works. VII. John Ray (1627-1705) and Francis Willughby (1635-1672)" (PDF). British Birds. 2 (9): 290–300. Archived (PDF) from the original on 2022-10-09.
  39. ^ White, Jeanne A. (1999-06-10). "Hill Collection — 18th c. French authors & artists". Retrieved 2007-12-01.
  40. ^ .
  41. ^ Farber, Paul L. (1982). The Emergence of Ornithology as a Scientific Discipline, 1760–1850. D. Reidel Publishing Company, Boston.
  42. ^
    S2CID 83849594
    .
  43. .
  44. ^ O’Hara, Robert J. (1988). "Diagrammatic classifications of birds, 1819–1901: views of the natural system in 19th-century British ornithology". Acta XIX Congressus Internationalis Ornithologici: 2746–2759.
  45. .
  46. ^ Fürbringer, Max (1888). Untersuchungen zur morphologie und systematik der vogel. Volume II (in German). Amsterdam: Verlag von TJ. Van Holkema.
  47. (PDF) from the original on 2022-10-09.
  48. .
  49. ^ .
  50. ^ Junker, Thomas (2003). "Ornithology and the genesis of the Synthetic Theory of Evolution" (PDF). Avian Science. 3 (2&3): 65–73. Archived (PDF) from the original on 2022-10-09.
  51. ^ .
  52. ^ .
  53. ^ Alexander, H. G. (1915). "A Practical Study of Bird Ecology". British Birds. 8 (9).
  54. ^ Lack, David (1959). "Watching migration by Radar" (PDF). British Birds. 52 (8): 258–267. Archived (PDF) from the original on 2022-10-09.
  55. ^ Crook, J. H. (1964). "The evolution of social organization and visual communication in the weaver birds (Ploceinae)". Behaviour. Supplement. 10: 1–178.
  56. .
  57. ^ Brown, J. L. (1964). "The evolution of diversity in avian territorial systems" (PDF). Wilson Bull. 76: 160–169. Archived (PDF) from the original on 2022-10-09.
  58. ^ "Contents". The Auk. 98 (2). Searchable Ornithological Research Archive. 1981.
  59. ^ O'Hara, Robert J. (1991). "Essay review of Phylogeny and Classification of Birds: A Study in Molecular Evolution by Charles G. Sibley and Jon E. Ahlquist". Auk. 108 (4): 990–994.
  60. S2CID 6683688. Archived from the original (PDF) on 2007-11-30. Retrieved 2007-11-30.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  61. .
  62. .
  63. .
  64. ^ Dunlap, Tom. "Tom Dunlap on Early Bird Guides. Environmental History January 2005". Retrieved 2007-11-24.
  65. ^ Briand, Frederic (November 2012). "From Bird Scientist to Spy: the Name is Bond, James Bond". National Geographic.
  66. (PDF) from the original on 2022-10-09.
  67. (PDF) from the original on 2022-10-09.
  68. (PDF) from the original on 2022-10-09.
  69. OCLC 62181407.{{cite book}}: CS1 maint: others (link
    )
  70. ^ "North American Breeding Bird Survey".
  71. .
  72. ^ Green, Rhys E. & Scharlemann, Jörn P. W. (2003). "Egg and skin collections as a resource for long-term ecological studies" (PDF). Bull. B.O.C. 123A: 165–176. Archived from the original (PDF) on 2007-06-30. Retrieved 2007-05-20.
  73. .
  74. ^ Livezey, Bradley C. (2003). "Avian spirit collections: attitudes, importance and prospects" (PDF). Bull. B. O. C. 123A: 35–51. Archived from the original (PDF) on 2007-06-30. Retrieved 2007-05-20.
  75. ^ Winker, K. (1993). "Specimen shrinkage in Tennessee warblers and Traill's flycatchers" (PDF). J. Field Ornithol. 64 (3): 331–336. Archived from the original (PDF) on 2007-06-30.
  76. ^ Bjordal, H. (1983). "Effects of deep freezing, freeze-drying and skinning on body dimensions of House Sparrows (Passer domesticus)". Cinclus. 6: 105–108.
  77. .
  78. (PDF) from the original on 2022-10-09.
  79. ^ "Techniques to capture Seaducks in the Chesapeake Bay and Restigouche River". USGS. Retrieved 2007-12-01.
  80. ^ Ralph, C. John; Geupel, Geoffrey R.; Pyle, Peter; Martin, Thomas E. & DeSante, David F. (1993). Handbook of field methods for monitoring landbirds. Gen. Tech. Rep. PSW-GTR-144-www. Albany, CA (PDF). Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture. Archived (PDF) from the original on 2022-10-09.
  81. ^ Walther, B. A. & Clayton, D. H. (1997). "Dust-ruffling: A simple method for quantifying ectoparasite loads of live birds" (PDF). J. Field Ornithol. 68 (4): 509–518. Archived (PDF) from the original on 2022-10-09.
  82. (PDF) from the original on 2022-10-09.
  83. ^ Bibby C., Jones M. & Marsden, S. (1998). Expedition Field Techniques – Bird Surveys. Expedition Advisory Centre, Royal Geographical Society, London. Archived from the original on 2007-12-06. Retrieved 2007-11-16.
  84. ^ Dunn EH, Bart J, Collins BT, Craig B, Dale B, Downes CM, Francis CM, Woodley S (2006). Monitoring bird populations in small geographic areas (PDF). Canadian Wildlife Service. Archived (PDF) from the original on 2022-10-09.
  85. ^ Winarni, N., Carroll, J.P. & O'Brien, T.G (2005). The application of camera traps to the study of Galliformes in southern Sumatra, Indonesia. pp. 109–121 in: Fuller, R.A. & Browne, S.J. (eds) 2005. Galliformes 2004. Proceedings of the 3rd International Galliformes Symposium. World Pheasant Association, Fordingbridge, UK.{{cite book}}: CS1 maint: multiple names: authors list (link)
  86. .
  87. S2CID 54943028.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  88. ISBN 978-3540434085.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  89. ^ Pasteur, Louis (1880). "De l'attenuation du virus du chokra des poules" (PDF). Comptes Rendus de l'Académie des Sciences. 91: 673–680. Archived from the original (PDF) on 2010-06-12. Retrieved 2010-08-29.
  90. PMID 18123477
    .
  91. ISBN 978-0-12-370634-8.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  92. .
  93. .
  94. ^ "Zebra finch genome assembly release". The songbird genome sequencing project. 6 Aug 2008. Archived from the original on 5 August 2009. Retrieved 7 May 2009.
  95. PMID 15455034
    .
  96. .
  97. .
  98. .
  99. .
  100. .
  101. S2CID 21914046. Archived from the original
    (PDF) on 2011-07-19.
  102. ^ Wing, L. (1947). Christmas census summary 1900–1939. State College of Washington, Pullman. Mimeograph.
  103. ^ "Great Backyard Bird Count".
  104. ^ "Étude des populations d'oiseaux du Québec". oiseauxqc.org.
  105. ^ "Project PigeonWatch".
  106. ^ EURING Coordinated bird-ringing in Europe. Euring.org. Retrieved on 2013-02-22.
  107. ^ Elliott, Clive C.H. (2006). "Bird population explosions in agroecosystems — the quelea, Quelea quelea, case history" (PDF). Acta Zoologica Sinica. 52: 554–560. Archived (PDF) from the original on 2022-10-09.
  108. ^ Jaegar, Michael & William A. Erickson (1980). "Levels of bird damage to Sorghum in the Awash basin of Ethiopia and the effects of the control of Quelea nesting colonies". Proceedings of the 9th Vertebrate Pest Conference.
  109. ^ Kalmbach, E. R. (1934). "Field observation in economic ornithology" (PDF). The Wilson Bulletin. 46 (2): 73–90. Archived (PDF) from the original on 2022-10-09.
  110. .
  111. .
  112. ^ Geis, Aelred D. (1976). "Effect of building design and quality on nuisance bird problems". Proceedings of the 7th Vertebrate Pest Conference.
  113. JSTOR 3784047.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  114. ^ "Factsheet on Avian Influenza". CDC. 2017-04-13.
  115. PMID 15931279.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  116. ^ Allan, J., Orosz, A. (2001). "The Costs of Birdstrikes to Commercial Aviation". Proceedings of Birdstrike 2001, Joint Meeting of Birdstrike Committee USA/Canada. Calgary, Alberta.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  117. ^ Gregory, R. D.; Noble, D.; Field, R.; Marchant, J.; Raven, M.; Gibbons, D. W. (2003). "Using birds as indicators of biodiversity" (PDF). Ornis. Hung. 12–13: 11–24. Archived from the original (PDF) on 2008-12-27. Retrieved 2009-05-09.
  118. JSTOR 1370218
    .
  119. .
  120. .

Additional sources

External links