PDGFRB

This article was updated by an external expert under a dual publication model. The corresponding peer-reviewed article was published in the journal Gene. Click to view.
Source: Wikipedia, the free encyclopedia.
PDGFRB
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_002609
NM_001355016
NM_001355017

NM_001146268
NM_008809

RefSeq (protein)

NP_002600
NP_001341945
NP_001341946

NP_001139740
NP_032835

Location (UCSC)Chr 5: 150.11 – 150.16 MbChr 18: 61.18 – 61.22 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Platelet-derived growth factor receptor beta is a

clonal eosinophilia
class of malignancies.

Gene

The PDGFRB gene is located on

exons. The gene is flanked by the genes for granulocyte-macrophage colony-stimulating factor and Colony stimulating factor 1 receptor (also termed macrophage-colony stimulating factor receptor), all three of which may be lost together by a single deletional mutation thereby causing development of the 5q-syndrome.[5] Other genetic abnormalities in PDGFRB lead to various forms of potentially malignant bone marrow disorders: small deletions in and chromosome translocations causing fusions between PDGFRB and any one of at least 30 genes can cause Myeloproliferative neoplasms that commonly involve eosinophilia, eosinophil-induced organ injury, and possible progression to aggressive leukemia (see blow).[6]

Structure

The PDGFRB gene encodes a typical receptor tyrosine kinase, which belongs to the type III tyrosine kinase receptor (RTK) family and is structurally characterized by five extracellular immunoglobulin-like domains, a single membrane-spanning helix domain, an intracellular juxtamembrane domain, a split tyrosine kinase domain and a carboxylic tail.[7] In the absence of ligand, PDGFRβ adopts an inactive conformation in which the activation loop folds over the catalytic site, the juxtamembrane region over a loop occluding the active site and the carboxy-terminal tail over the kinase domain. Upon PDGF binding the dimerization of receptor releases the inhibitory conformations due to auto-phosphorylation of regulatory tyrosine residues in trans fashion. Tyrosine residues 857 and 751 are major phosphorylation sites for the activation of PDGFRβ.[8]

The molecular mass of the mature, glycosylated PDGFRβ protein is approximately 180 kDa.

Modes of activation

Activation of PDGFRβ requires de-repression of the receptor's kinase activity. The ligand for PDGFRβ (PDGF) accomplishes this in the course of assembling a PDGFRβ dimer. Two of the five PDGF isoforms activate PDGFRβ (PDGF-B and PDGF-D). The activated receptor phosphorylates itself and other proteins, and thereby engages intracellular signaling pathways that trigger cellular responses such as migration and proliferation. There are also PDGF-independent modes of de-repressing the PDGFRβ's kinase activity and hence activating it. For instance, forcing PDGFRβ into close proximity of each other by overexpression or with antibodies directed against the extracellular domain. Alternatively, mutations in the kinase domain that stabilize a kinase active conformation result in constitutive activation.

Unlike PDGFRα, PDGFRβ cannot be indirectly activated. This is because PDGFRβ recruits RasGAP and thereby attenuates Ras/PI3K activity, which is required to engage a feed-forward loop that is responsible for this mode of activation.[9][10]

Role in physiology/pathology

The phenotype of knock out mice demonstrates that PDGFRB is essential for vascular development, and that PDGFRB is responsible for activating PDGFRβ during embryogenesis. Eliminating either PDGFRB, or PDGF-B reduces the number of pericytes and vascular smooth muscle cells, and thereby compromises the integrity and/or functionality of the vasculature in multiple organs, including the brain, heart, kidney, skin and eye.[11][12][13][14]

In vitro studies using cultured cells indicate that endothelial cells secrete PDGF, which recruits PDGFRβ-expressing pericytes that stabilize nascent blood vessels.[15] Mice harboring a single activated allele of PDGFRB show a number of postnatal phenotypes including reduced differentiation of aortic vascular smooth muscle cells and brain pericytes. Similarly, differentiation of adipose from pericytes and mesenchymal cells is suppressed.[16] Misregulation of the PDGFRβ's kinase activity (typically activation) contributes to endemic diseases such as cancer and cardiovascular disease.[17][18][19]

PDGFRB mutations

5q- Syndrome

Human chromosome 5 deletions that remove three adjacent genes, those for

chemotherapy drug, lenalidomide.[5][20]

PDGFRB Translocations

Human chromosome translocations between the PDGFRB gene and at least any one of 30 genes on other chromosomes lead to

PDGFRA (i.e. platelet derived growth factor receptor A or alpha-type-platelet derived growth factor receptor) gene with the FIP1L1 gene (see FIP1L1-PDGFRA fusion gene. The most common of these rare mutations is the translocation of PDGFRB gene with the ETV6
gene (also termed ETS variant gene 6).

PDGFRB-ETV6 translocations

The ETV6 gene codes for a transcription factor protein that in mice appears to be required for

exons, and is well-known to be involved in a large number of chromosomal rearrangements associated with leukemia and congenital fibrosarcoma.[21] Translocations between it and the PDGFRB gene, notated as t(5;12)(q33;p13), yield a PDGFRB-ETV6 fused gene that encodes a fusion protein, PDGFRB-ETV6. This chimeric protein, unlike the PDGFRB protein: a) has continuously active PDGFRB-mediated tyrosine kinase due to its forced dimerization by the PNT protein binding domain of the ETV6 protein; b) is highly stable due to its resistance to ubiquitin-Proteasome degradation; and c) therefore over-stimulates cell signaling pathways such as STAT5, NF-κB, and Extracellular signal-regulated kinases which promote cell growth and proliferation. This continuous signaling, it is presumed, leads to the development of myeloid and/or lymphoid neoplasms that commonly include increased numbers of blood born and tissue eosinophils, eosinophil-induced organ and tissue injury, and possible progression to aggressive form of leukemia.[22]

PDGFRB-ETV6 fusion protein-induced neoplasms often present with features that would classify them as

It is critical that the PDGFRB-ETV6 fusion protein-driven disease be diagnostically distinguished from many of the just cited other diseases because of its very different treatment.

Patients with the PDGFRB-ETV6 fusion protein-driven disease are more often adult males but rarely children. They present with

cytogenetic examination of blood or bone marrow cells to test for PDGFRB rearrangements using Fluorescence in situ hybridization or to test for the fused FDGFRB-ATV6 fluorescence in situ hybridization and/or Real-time polymerase chain reaction using appropriate nucleotide probes.[22] These patients, unlike many patients with similarly appearing neoplasms, respond well to the tyrosine kinase inhibitor, imatinib. The drug often causes long-term complete hematological and cytogenic remissions as doses well below those used to treat chronic myelogenous leukemia. Primary or acquired drug resistance to this drug is very rare. Additional adjuvant chemotherapy may be necessary if a patient's disease is unresponsive to tyrosine kinase inhibitor therapy and/or progresses to more aggressive disease phase similar to that seen in the blast crisis of chronic myelogenous leukemia.[22][6]

Other PDGFRB translocations

The PDGFRB gene has been found to fuse with at least 36 other genes to form fusion genes that encode chimeric proteins that are known or presumed to possess: a) continuously active PDGFRB-derived tyrosine kinase activity; b) the ability to continuously stimulate the growth and proliferation of hematological stem cells; and c) the ability to cause myeloid and lymphoid neoplasms that commonly but not always are associated with eosinophilia. In all instances, these gene fusion diseases are considered types of

clonal eosinophilia with recommended treatment regimens very different than those of similar hematological malignancies. The genes fusing to PDGFRB, their chromosomal location, and the notations describing their fused genes are given in the following table.[6][22]

Gene locus notation gene locus notation Gene locus notation gene locus notation gene locus notation gene locus notation
TPM3
1q21 t(1;5)(q21;q32)
PDE4DIP
1q22 t(1;5)(q22;q32) SPTBN1 2p16 t(2;5)(p16;q32) GOLGA4 3p21-25 t(3;5)(p21-25;q31-35) WRD48[24] 3p21-22 t(1;3;5)(p36;p21;q32) PRKG2[25] 4q21 t(4;5)(p21;q32)
CEP85L[26] 6q22 t(5;6)(q32;q22)
HIP1
7q11 t(5;7)(q32;q11) KANK1 9q24 t(5;9)(q32;q24) BCR 9q34 t(5;9)(q32;q34) CCDC6 10q21 t(5;10)(q32;q21 H4(D10S170)[27] 10q21.2 t(5;10)(q32;q21.2)
GPIAP1[28] 11p13 multiple ETV6 12p13 t(5;12)q32;p13) ERC1 12p13.3 t(5;12)(q32;p13.3) GIT2 12q24 t(5;12)(q31-33;q24) NIN[29] 14q24 t(5;14)(q32;q24 TRIP11 14q32 t(5;14)(q32;q32)
CCDC88C[30] 14q32 t(5;14)(q33;q32) TP53BP1 15q22 t(5;15)q33;22) NDE1 16p13 t(5;16)(q33;p13) SPECC1 17p11 t(5;17)(q32;p11.2) NDEL1 17p13 t(5;17)(q32;p13) MYO18A 17q11.2 t(5;17)(q32;q11.2)
BIN2[31] 12q13 t(5;12)(q32;q13)
COL1A1
17q22 t(5;17)q32;q22) DTD1[32] 20p11 t(5;20)(q32;p11) CPSF6 12q15 t(5;12)(q32;q15) RABEP1 17p13 t(5;17)(q32;p13) MPRIP 17p11 t(5;17)(q32;p11)
SPTBN1 2p16 t(5;2)(q32;p16) WDR48[24] 3p22 t(5;3)q32;p22) GOLGB1 3q12 t(3;5)(q12;q32) DIAPH1 5q31 t(5;5)(q32;q31) TNIP1 5q33 t(5;5)(q32;q33) SART3 12q23 t(5;12)(q32;q23)

Similar to PDGFRB-ETV6 translocations, these translocations are generally in-frame and encode for fusion proteins with their PDGFRB-derived tyrosine kinase being continuously active and responsible for causing the potentially malignant growth of its myeloid and/or lymphoid harboring cells. Patients are usually middle-aged men. They commonly present with anemia, eosinophilia, monocytosis, and splenomegaly and have their disease classified as chronic myelomonocytic leukemia, atypical chronic myelomonocytic leukemia, juvenile myelomonocytic leukemia, myelodysplastic syndrome, acute myelogenous leukemia, acute lymphoblastic leukemia, or T lymphoblastic lymphoma. Diagnosis relies on cytogenetic analyses to detect breakpoints in the long arm of chromosome 5 by Fluorescence in situ hybridization. These patients usually respond well to imatinib therapy.[6][22][33]

Primary familial brain calcification

Primary familial brain calcification (see

autosomal dominant loss of function mutations in PDGFRB or the gene which encodes a ligand that simulates PDGFRB, Platelet-derived growth factor, PDGFB. PDGFRB is extensively expressed in the neurons, chorioid plexus, vascular smooth muscle cells, and pericytes of the human brain, particularly the basal ganglia and the dentate nucleus. It is proposed that signal transduction through PDGFRB maintains blood–brain barrier integrity and that loss of the PDGFRB receptor or its ligand, PDGFB, disrupts the blood–brain barrier, subsequently promoting (peri)vascular calcium deposition and thereby causing the dysfunction and death of neurons.[34][35]

Interactions

PDGFRB has been shown to

interact
with:

Notes

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000113721Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024620Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ a b "PDGFRB platelet derived growth factor receptor beta [Homo sapiens (human)] - Gene - NCBI".
  6. ^
    PMID 28028030
    .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. ^ "ETV6 ETS variant 6 [Homo sapiens (human)] - Gene - NCBI".
  22. ^
    PMID 26276769
    .
  23. .
  24. ^ a b "WDR48 WD repeat domain 48 [Homo sapiens (human)] - Gene - NCBI".
  25. ^ "PRKG2 protein kinase cGMP-dependent 2 [Homo sapiens (human)] - Gene - NCBI".
  26. ^ "CEP85L centrosomal protein 85 like [Homo sapiens (human)] - Gene - NCBI".
  27. ^ "CCDC6 coiled-coil domain containing 6 [Homo sapiens (human)] - Gene - NCBI".
  28. ^ "CAPRIN1 cell cycle associated protein 1 [Homo sapiens (human)] - Gene - NCBI".
  29. ^ "NIN ninein [Homo sapiens (human)] - Gene - NCBI".
  30. ^ "CCDC88C coiled-coil domain containing 88C [Homo sapiens (human)] - Gene - NCBI".
  31. ^ "BIN2 bridging integrator 2 [Homo sapiens (human)] - Gene - NCBI".
  32. ^ "DTD1 D-tyrosyl-tRNA deacylase 1 [Homo sapiens (human)] - Gene - NCBI".
  33. S2CID 42668440
    .
  34. .
  35. .
  36. .
  37. .
  38. ^ .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .

Further reading

External links

This page is based on the copyrighted Wikipedia article: PDGFRB. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy