Phosphatidylinositol (3,4,5)-trisphosphate

Source: Wikipedia, the free encyclopedia.
(Redirected from
PIP3
)
Phosphatidylinositol (3,4,5)-trisphosphate
Names
Other names
PI(3,4,5)P3, PtdIns(3,4,5)P3
Identifiers
ChEBI
KEGG
Properties
C47H86O22P4
Molar mass 1126.46 g/mol, neutral with fatty acid composition - 18:0, 20:4
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), abbreviated PIP3, is the product of the class I

phosphatidylinositol (4,5)-bisphosphate (PIP2). It is a phospholipid
that resides on the plasma membrane.

Discovery

In 1988,

neutrophils with levels that increased rapidly following physiologic stimulation with chemotactic peptide.[2] Subsequent studies demonstrated that in vivo the enzyme originally identified by Cantley's group prefers PtdIns(4,5)P2 as a substrate, producing the product PIP3.[3]

Function

PIP3 functions to activate downstream signaling components, the most notable one being the protein kinase Akt, which activates downstream anabolic signaling pathways required for cell growth and survival.[4]

PtdIns(3,4,5)P3 is dephosphorylated by the

PI(3,4)P2.[5]

The

Roles in the nervous system

PIP3 plays a critical role outside the cytosol, notably at the postsynaptic terminal of hippocampal cells. Here, PIP3 has been implicated in regulating synaptic strengthening and AMPA expression, contributing to long-term potentiation. Moreover, PIP3 suppression disrupts normal AMPA expression on the neuron membrane and instead leads to the accumulation of AMPA on dendritic spines, commonly associated with synaptic depression.[9]

PIP3 interacts with proteins to mediate synaptic plasticity. Of these proteins, Phldb2 has been shown to interact with PIP3 to induce and maintain long-term potentiation. In the absence of such an interaction, memory consolidation is impaired.[10]

References

This page is based on the copyrighted Wikipedia article: PIP3. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy