Palinuro Seamount

Coordinates: 39°29′04″N 14°49′44″E / 39.48444°N 14.82889°E / 39.48444; 14.82889[1]
This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Palinuro
Aeolian arc, including coastline and depth contour lines for every 500 meters.
Summit depth70 m (230 ft)
Location
LocationTyrrhenian Sea
Coordinates39°29′04″N 14°49′44″E / 39.48444°N 14.82889°E / 39.48444; 14.82889[1]

Palinuro Seamount is a seamount in the Tyrrhenian Sea. It is an elongated 50–70 km (31–43 mi) long complex of volcanoes north of the Aeolian Islands with multiple potential calderas. The shallowest point lies at 80–70 m (260–230 ft) depth and formed an island during past episodes of low sea level. Palinuro was active during the last 800,000 years and is likely the source for a 10,000 years old tephra layer in Italy. Ongoing seismicity occurs at the seamount, which may be a tsunami hazard. The volcanic activity may somehow relate to the subduction of the Ionian Sea farther east.

Diffuse

deep water corals
occur.

Geography and geomorphology

Palinuro lies north of the

Marsili Seamount lies about 30 km (19 mi)[3] southwest from Palinuro[4] and Glabro Seamount 29 km (18 mi) east of Palinuro.[5] The Palinuro seamount is one of the largest in the Tyrrhenian Sea[6] and is also known as Palinuro-Strabo seamount.[1]

The seamount is about 3 km (1.9 mi) high.

mass failures along the seamount, especially on its southern flank,[10] and of east-west trending faulting.[11]

At least eight separate volcanoes make up Palinuro.

marine terraces, which may have formed when sea levels were so low that the summit of Palinuro rose above the sea.[14] Gullies,[22] rocky outcrops and crater remnants are found on the flat-topped cones.[19] Rocky outcrops are scarce in the central part of Palinuro seamount, which is largely covered with sediments.[23]

Geology

The

asthenospheric mantle below the northern margin of the Calabrian subduction zone, and from underneath the descending Ionian slab.[27]

The seamount may be located at the margin between the oceanic Marsili basin to the south, and the

strike-slip fault that Palinuro seamount formed on[16][28] may be the northern margin of the Calabrian subduction zone[18] ("subduction-transform edge propagator"[29]) and continues through Glabro, Enotrio and Ovidio seamounts[30] and then on land as the Cetraro-Rossano Line.[16] This lineament also appears to separate a tectonically stable northern domain of Italy from a slowly uplifting southern domain.[31] A second, northeastward trending lineament continues on land as the Palinuro-Sant' Arcangelo lineament.[32]

Composition

Dredging has yielded

Biology

Dense and large stands of

Small hydrothermal deposits with the shape of chimneys are covered by

remotely operated vehicles have not identified substantial hydrothermal vent-associated communities.[44] Italy has declared Palinuro a protected area as part of the European Natura 2000 project.[45]

Eruption history

Palinuro was active between 800,000 and 300,000 years ago.

hydrothermal alteration.[47]

The PL-1

BCE,[48] and may have been emitted from an emergent Palinuro when sea levels were lower.[49]

Recent activity and hazards

Palinuro or its southeastern sector may still be active, as volcanic seismicity has been detected between Palinuro and the Calabrian coast.[50] Seismicity at low depths, perhaps linked to hydrothermal activity, has also been recorded.[51] Microearthquakes between 10–16 km (6.2–9.9 mi) depth may mark a melt storage zone.[52]

Volcanic edifices are often unstable and prone to

last glacial maximum 18,000-20,000 years ago,[54] and seismicity and hydrothermal activity - which tend to weaken volcanic edifices - could contribute to future collapses on the volcano.[51] Some collapse scenarios[55] could generate waves several metres high that would impact Sicily and Campania.[56]

Hydrothermal activity and deposits

Diffuse

hydrothermal emissions have been found at Palinuro,[57] which form small chimneys,[42] stained rocks,[23] spires reaching 30 cm (12 in) height[58] and warm (>60 °C (140 °F)) muds with sulfide-sulfate deposits.[59] The hydrothermal vents are found on the western side of Palinuro, around the horseshoe-shaped caldera, while hydrothermal vent deposits are found throughout the edifice.[60] The vents around the horseshoe-shaped caldera may coincide with the margins of the caldera and thus are structurally controlled.[61] Recent hydrothermal deposits around the summit, which was eroded during low sea level, indicate hydrothermal activity during the Holocene.[62] The active hydrothermal vents are accompanied by chemical anomalies in the water column,[63] and ships have reported a smell of hydrogen sulfide above the eastern part of Palinuro.[64]

Hydrothermal activity is responsible for

clinopyroxene, illite, muscovite, plagioclase and quartz.[75] The iron-manganese crusts have commercial potential.[58]

References

  1. ^ a b Würtz 2015, p. 113.
  2. ^ a b c d e GVP 2022, General Information.
  3. ^ a b Ligi et al. 2014, p. 8.
  4. ^ Passaro et al. 2010, p. 135.
  5. ^ Würtz 2015, p. 143.
  6. ^ Milano, Passaro & Sprovieri 2012, p. 404.
  7. ^ a b c d Passaro et al. 2010, p. 131.
  8. ^ Innangi et al. 2016, p. 736.
  9. ^ a b c d Caratori Tontini, Cocchi & Carmisciano 2009, p. 11.
  10. ^ a b Passaro et al. 2010, p. 133.
  11. ^ Passaro et al. 2010, p. 139.
  12. ^ Marani & Gamberi 2004, p. 115.
  13. ^ a b Caratori Tontini, Cocchi & Carmisciano 2009, p. 12.
  14. ^ a b Passaro et al. 2010, p. 132.
  15. ^ Ligi et al. 2014, p. 14.
  16. ^ a b c Milano, Passaro & Sprovieri 2012, p. 412.
  17. ^ Innangi et al. 2016, p. 738.
  18. ^ a b Milano, Passaro & Sprovieri 2012, p. 406.
  19. ^ a b Ligi et al. 2014, p. 15.
  20. ^ Milano, Passaro & Sprovieri 2012, p. 408.
  21. ^ Caratori Tontini, Cocchi & Carmisciano 2009, p. 14.
  22. ^ Passaro et al. 2011, p. 231.
  23. ^ a b Petersen & Monecke 2009, p. 12.
  24. ^ a b c d Passaro et al. 2010, p. 130.
  25. ^ a b Ligi et al. 2014, p. 5.
  26. ^ Milano, Passaro & Sprovieri 2012, p. 403.
  27. ^ Cocchi et al. 2017, p. 9.
  28. ^ Gallotti et al. 2020, p. 3.
  29. ^ Cocchi et al. 2017, p. 2.
  30. ^ Cocchi et al. 2017, p. 3.
  31. ^ Passaro et al. 2011, p. 236.
  32. ^ Milano, Passaro & Sprovieri 2012, p. 413.
  33. ^ Innangi et al. 2016, p. 737.
  34. ^ Colantoni et al. 1981, p. M6.
  35. ^ Fanelli et al. 2017, p. 966.
  36. ^ a b Würtz 2015, pp. 156–157.
  37. ^ Rosli et al. 2018, p. 20.
  38. ^ Eckhardt et al. 1997, p. 184.
  39. ^ Kidd & Ármannson 1979, p. 72.
  40. ^ Hilpold et al. 2011, p. 535.
  41. ^ Würtz 2015, p. 14.
  42. ^ a b c Ligi et al. 2014, p. 19.
  43. ^ a b c Petersen et al. 2007.
  44. ^ Würtz 2015, p. 157.
  45. ^ Angiolillo et al. 2021, p. 17.
  46. ^ Passaro et al. 2010, p. 137.
  47. ^ Caratori Tontini, Cocchi & Carmisciano 2009, p. 15.
  48. ^ GVP 2022, Eruption History.
  49. ^ Siani et al. 2004, p. 2496.
  50. ^ Passaro et al. 2010, pp. 130–131.
  51. ^ a b Gallotti et al. 2020, p. 2.
  52. ^ Cocchi et al. 2017, p. 8.
  53. ^ Gallotti et al. 2020, p. 1.
  54. ^ Gallotti et al. 2020, p. 5.
  55. ^ Gallotti et al. 2020, p. 11.
  56. ^ Gallotti et al. 2020, p. 8.
  57. ^ a b Safipour et al. 2017, p. 4.
  58. ^ a b Würtz 2015, p. 156.
  59. ^ Petersen & Monecke 2009, p. 6.
  60. ^ Milano, Passaro & Sprovieri 2012, p. 409.
  61. ^ Ligi et al. 2014, p. 20.
  62. ^ Ligi et al. 2014, p. 21.
  63. ^ a b Milano, Passaro & Sprovieri 2012, p. 410.
  64. ^ Petersen & Monecke 2009, p. 26.
  65. ^ Eckhardt et al. 1997, p. 181.
  66. ^ Tufar 1991, p. 267.
  67. ^ Tufar 1991, p. 282.
  68. ^ Tufar 1991, p. 290.
  69. ^ Safipour et al. 2017, p. 2.
  70. ^ Iyer et al. 2012, p. 301.
  71. ^ Fuchs, Hannington & Petersen 2019, p. 796.
  72. ^ Ladenberger et al. 2015, p. 63.
  73. ^ Eckhardt et al. 1997, p. 195.
  74. ^ Eckhardt et al. 1997, pp. 179, 181.
  75. ^ Eckhardt et al. 1997, p. 186.

Sources