Pelagic sediment

Source: Wikipedia, the free encyclopedia.

Pelagic sediment or pelagite is a fine-grained sediment that accumulates as the result of the settling of particles to the floor of the open ocean, far from land. These particles consist primarily of either the microscopic, calcareous or siliceous shells of phytoplankton or zooplankton; clay-size siliciclastic sediment; or some mixture of these. Trace amounts of meteoric dust and variable amounts of volcanic ash also occur within pelagic sediments. Based upon the composition of the ooze, there are three main types of pelagic sediments: siliceous oozes, calcareous oozes, and red clays.[1][2]

The composition of pelagic sediments is controlled by three main factors. The first factor is the distance from major landmasses, which affects their dilution by terrigenous, or land-derived, sediment. The second factor is water depth, which affects the preservation of both siliceous and calcareous biogenic particles as they settle to the ocean bottom. The final factor is ocean fertility, which controls the amount of biogenic particles produced in surface waters.[1][2]

Oozes

In case of

radiolarian oozes. Oozes are also classified and named according to their mineralogy, i.e. calcareous or siliceous oozes. Whatever their composition, all oozes accumulate extremely slowly, at no more than a few centimeters per millennium.[2][3]

Calcareous ooze is ooze that is composed of at least 30% of the calcareous microscopic shells—also known as tests—of foraminifera, coccolithophores, and pteropods. This is the most common pelagic sediment by area, covering 48% of the world ocean's floor. This type of ooze accumulates on the ocean floor at depths above the carbonate compensation depth. It accumulates more rapidly than any other pelagic sediment type, with a rate that varies from 0.3–5 cm/1000 yr.[1][2]

spicules, silicoflagellates or both. This type of ooze accumulates on the ocean floor at depths below the carbonate compensation depth. Its distribution is also limited to areas with high biological productivity, such as the polar oceans, and upwelling zones near the equator. The least common type of sediment, it covers only 15% of the ocean floor. It accumulates at a slower rate than calcareous ooze: 0.2–1 cm/1000 yr.[1][2]

Red and brown clays

Red clay, also known as either brown clay or pelagic clay, accumulates in the deepest and most remote areas of the ocean. It covers 38% of the ocean floor and accumulates more slowly than any other sediment type, at only 0.1–0.5 cm/1000 yr.

authigenic minerals such as zeolites, limonite and manganese oxides. The bulk of red clay consists of eolian dust. Accessory constituents found in red clay include meteorite dust, fish bones and teeth, whale ear bones, and manganese micro-nodules.[2]

These pelagic sediments are typically bright red to chocolate brown in color. The color results from coatings of iron and manganese oxide on the sediment particles. In the absence of organic carbon, iron and manganese remain in their oxidized states and these clays remain brown after burial. When more deeply buried, brown clay may change into red clay due to the conversion of iron-hydroxides to hematite.[2]

These sediments accumulate on the ocean floor within areas characterized by little planktonic production. The clays which comprise them were transported into the deep ocean in suspension, either in the air over the oceans or in surface waters. Both wind and ocean currents transported these sediments in suspension thousands of kilometers from their terrestrial source. As they were transported, the finer clays may have stayed in suspension for a hundred years or more within the water column before they settled to the ocean bottom. The settling of this clay-size sediment occurred primarily by the formation of clay

fecal pellets by pelagic organisms.[2]

Distribution and average thickness of marine sediments

Total sediment thickness of the ocean floor
Deposits are thick on the continental shelves, and thinnest in the deep sea on either side of the mid-ocean ridge.
Region Percent of ocean area[citation needed] Percent of total volume of marine sediments Average thickness
Continental shelves 9% 15% 2.5 km (1.6 mi)
Continental slopes 6% 41% 9 km (5.6 mi)
Continental rises 6% 31% 8 km (5 mi)
Deep-ocean floor 78% 13% 0.6 km (0.4 mi)

Classification of marine sediments by source of particles

Sediment type Source Examples Distribution Percent of all ocean floor area covered
Terrigenous
volcanic eruptions
, blown dust
estuarine mud
Dominant on
abyssal plains
, polar ocean floors
~45%
Biogenous Organic; accumulation of hard parts of some marine organisms Calcareous and siliceous oozes Dominant on
deep-ocean floor (siliceous ooze
below about 5 km)
~55%
Hydrogenous (authigenic) Precipitation of dissolved mineral from water, often by bacteria
Manganese nodules, phosphorite
deposits
Present with other, more dominant sediments 1%
Cosmogenous
Dust from space, meteorite
debris
Tektite spheres, glassy nodules Mixed in very small proportion with more dominant sediments 1%

See also

Footnotes

External links