Penicillium rubens

Source: Wikipedia, the free encyclopedia.

Penicillium rubens
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Eurotiomycetes
Order: Eurotiales
Family: Aspergillaceae
Genus: Penicillium
Species:
P. rubens
Binomial name
Penicillium rubens
Biourge (1910)

Penicillium rubens is a species of fungus in the genus

roquefortine, and sorbicillins.[4][5]

History

Belgian microbiologist Philibert Melchior Joseph Ehi Biourge was the first to describe P. rubens in 1923.[6] The medicinal importance was discovered by Alexander Fleming, a physician at St Mary's Hospital, London. In September 1928, Fleming found that one of his bacterial cultures (of Staphylococcus aureus) was contaminated with mould, and that the area around the mould inhibited bacterial growth. He gave the name penicillin for the purported antibacterial substance produced by the mould. After a series of experimental tests, he published his discovery in the June 1929 issue of the British Journal of Experimental Pathology.[7] With the help of his colleague Charles J. La Touche, Fleming identified the fungus as Penicillium rubrum.[1]

But

nomen conservandum).[12]

Whole genome sequence and phylogenetic analysis, particularly using β-tubulin sequences, in 2011 showed that P. notatum is P. rubens, and that P. chrysogenum is a different species.[2][13]

Biology

Penicillium rubens (CBS 205.57 = NRRL 824 = IBT 30142), Fleming's original penicillin-producer. A–C. Colonies seven-day-old 25°C. A. Colonies in Czapek yeast extract agar. B. Colonies in malt extract agar. C. Colonies in yeast extract sucrose agar. D–H. Conidiophores. I. Conidia. Bars = 10 µm.

P. rubens is a common fungus of indoor environment. Along with

conidiophores are smooth and measure 200-300 µm in length. The hairy surface, penicilli are 8-12 µm long. The conidia are smooth-walled, ellipsoidal in shape, measuring 2.5-4.0 µm long, and are blue or bluish-green in colour.[15] It exists in a number of strains, of which the most important are Fleming's strain (designated CBS 205.57 or NRRL 824 or IBT 30142) from which the first penicillin was discovered and the Wisconsin strain (NRRL1951) obtained from a cantaloupe in Peoria, Illinois, in 1944 and has been used for industrial production of penicillin G.[16] The original Wisconsin strain itself has been produced in a variety of strains.[17]

Genome

P. rubens has four chromosomes.

pseudogenes and 116 truncated ORFs.[19] Three genes, namely pcbAB, pcbC, and penDE constitute the core sites for penicillin biosynthesis. They are distributed in clusters among other (ORFs) in a 58.8 kb region,[20] on chromosome 2.[18][17] pcbAB encodes an enzyme α-aminoadipoyl-L-cysteinyl-D-valine synthetase, pcbC encodes isopenicillinN (IPN) synthase, and penDE, encoding acyl-CoA:isopenicillinN acyltransferase.[21] The high penicillin-producing strain, NCPC10086, has slightly larger genome of 32.3 Mb, with about 13,290 protein-coding genes. There are at least 69 genes not present in 54-1255 strain. The gene Pch018g00010 that codes for enzymes in glutathione metabolism is considered as the key factor in enhanced penicillin production of this strain.[22]

The mitochondrial genome consists of 31,790 bp and 17 ORFs.

peroxisomes). The peroxisome gene pex11 is essential for controlling the amount of penicillin synthesis; the more the gene is activated (expressed), the more the penicillins.[23]

Uses

P. rubens is the principal source of a class of antibiotics, penicillins. The species produces three such compounds, benzylpenicillin (G), phenoxymethylpenicillin (V) and octanoylpenicillin (K).[24] Penicillin G is the first naturally occurring compound isolated and used as an antibiotic.[25][26][27] It is also the source of cephalosporins.[28]

References