Pentacarbonylhydridomanganese

Source: Wikipedia, the free encyclopedia.
Pentacarbonylhydridomanganese
Pentacarbonylhydridomanganese
Names
Other names
Hydrogen pentacarbonylmanganate(−I) (7CI); Manganese, pentacarbonylhydro- (8CI); Hydridomanganese pentacarbonyl; Hydridopentacarbonylmanganese; Manganese pentacarbonyl hydride; Pentacarbonylhydromanganese; Pentacarbonylmanganese hydride
Identifiers
3D model (
JSmol
)
ChemSpider
  • InChI=1S/5CO.Mn.H/c5*1-2;;
    Key: SKOPWNLHPUYPLV-UHFFFAOYSA-N
  • O=C=[MnH](=C=O)(=C=O)(=C=O)=C=O
Properties
HMn(CO)5
Molar mass 195.99799 g/mol
Appearance At room temperature, it is liquid and colorless. Below its melting point, it may be sublimed in vacuum.[1]
Acidity (pKa) 7.1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Pentacarbonylhydridomanganese is an

organometallic compound with formula HMn(CO)5. This compound is one of the most stable "first-row" transition metal hydrides
.

Preparation

It was first reported in 1931.

superhydride
:

2 LiHB(C2H5)3 + Mn2(CO)10 → 2 LiMn(CO)5 + H2 + 2 B(C2H5)3
Li[Mn(CO)5] + CF3SO3H → HMn(CO)5 + CF3SO3Li

Salts of [Mn(CO)
5
]
can be isolated as crystalline PPN+
(μ-nitrido—bis-(triphenylphosphorus)) salt, which is smoothly protonated by
CF
3
SO
3
H
.[3]

PPN[Mn(CO)
5
] + CF
3
SO
3
H
→ HMn(CO)5 + PPN+
CF
3
SO
3

This compound can also be formed by the hydrolysis of pentacarbonyl(trimethylsilyl)manganese:[4]

(CO)5MnSiMe3 + H2O → HMn(CO)5 + Me3SiOH (Me = CH3)

Structure and properties

The structure of HMn(CO)5 has been studied by many methods including

molecular point group is C4v.[5] The H-Mn bond length is 1.44 ± 0.03 Å.[5]
Gas phase electron diffraction analysis confirms these conclusions.

Main reactions

The

pKa of HMn(CO)5 in water is 7.1.[8] It is thus comparable to hydrogen sulfide
, a common inorganic acid, in its acidity.

A common reaction involving HMn(CO)5 is substitution of the CO ligands by organophosphines, as occurs both thermally and photochemically. In this way the many derivatives form of the type HMn(CO)5-x(PR3)x.[9] (R here need not be a purely hydrocarbon component; it may, for instance, be OEt, where Et = ethyl group.)

HMn(CO)5 can be used to reduce

olefins and other organic compounds, as well as metal halides.[3]

It can be methylated with diazomethane.[1]

HMn(CO)5 + CH2N2 → Mn(CO)5CH3 + N2

Notes

References

  1. ^ a b Eley, D.D.; Pines, Herman; Weisz, P.B. Advances In Catalysis. 32. 385.
  2. ^ Hieber, W. Leutert, F. Naturwissenschaften. 1931. 360.
  3. ^
  4. ^ a b c Kukolich, S.G. Microwave Spectrum and Molecular Structure for Manganese Pentacarbonyl Hydride. 33. 1994. 1217-1219
  5. ^ Fenske, Richard. Electronic Structure and Bonding in Manganese Pentacarbonyl Halides and Hydride. Inorganic Chemistry. 9. 1970. 1053-1060.
  6. .
  7. ^ Albertin, Gabriele. Cationic Molecular Hydrogen Complexes of Mn (I). Organometallics. 16. 1997. 4959-4969.