Physiology

Source: Wikipedia, the free encyclopedia.
(Redirected from
Physiological
)

Oil painting depicting Claude Bernard, the father of modern physiology, with his pupils

Physiology (

Ancient Greek φύσις (phúsis) 'nature, origin', and -λογία (-logía) 'study of')[1] is the scientific study of functions and mechanisms in a living system.[2][3] As a subdiscipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out chemical and physical functions in a living system.[4] According to the classes of organisms, the field can be divided into medical physiology, animal physiology, plant physiology, cell physiology, and comparative physiology.[4]

Central to physiological functioning are

biochemical processes, homeostatic control mechanisms, and communication between cells.[5] Physiological state is the condition of normal function. In contrast, pathological state refers to abnormal conditions, including human diseases
.

The Nobel Prize in Physiology or Medicine is awarded by the Royal Swedish Academy of Sciences for exceptional scientific achievements in physiology related to the field of medicine.

Foundations

Because physiology focuses on the functions and mechanisms of living organisms at all levels, from the molecular and cellular level to the level of whole organisms and populations, its foundations span a range of key disciplines:

  • Anatomy is the study of the structure and organization of living organisms, from the microscopic level of cells and tissues to the macroscopic level of organs and systems. Anatomical knowledge is important in physiology because the structure and function of an organism are often dictated by one another.
  • Biochemistry is the study of the chemical processes and substances that occur within living organisms. Knowledge of biochemistry provides the foundation for understanding cellular and molecular processes that are essential to the functioning of organisms.
  • Biophysics is the study of the physical properties of living organisms and their interactions with their environment. It helps to explain how organisms sense and respond to different stimuli, such as light, sound, and temperature, and how they maintain homeostasis, or a stable internal environment.
  • Genetics is the study of heredity and the variation of traits within and between populations. It provides insights into the genetic basis of physiological processes and the ways in which genes interact with the environment to influence an organism's phenotype.
  • Evolutionary biology is the study of the processes that have led to the diversity of life on Earth. It helps to explain the origin and adaptive significance of physiological processes and the ways in which organisms have evolved to cope with their environment.

Subdisciplines

There are many ways to categorize the subdisciplines of physiology:[6]

Subdisciplines by level of organisation

Cell physiology

Although there are differences between animal, plant, and microbial cells, the basic physiological functions of cells can be divided into the processes of cell division, cell signaling, cell growth, and cell metabolism.[citation needed]

Subdisciplines by taxa

Plant physiology