Phytoestrogen

Source: Wikipedia, the free encyclopedia.

A phytoestrogen is a plant-derived

estrogenic or antiestrogenic effects.[2] Phytoestrogens are not essential nutrients because their absence from the diet does not cause a disease, nor are they known to participate in any normal biological function.[2] Common foods containing phytoestrogens are soy protein, beans, oats, barley, rice, coffee, apples, carrots
(see Food Sources section below for bigger list).

Its name comes from the

estrus" (Greek οίστρος) means "sexual desire", and "gene" (Greek γόνο) is "to generate". It has been hypothesized that plants use a phytoestrogen as part of their natural defense against the overpopulation of herbivore animals by controlling female fertility.[3][4]

The similarities, at molecular level, of an

red clover (phytoestrogen-rich plants) had adverse effects on the fecundity of grazing sheep.[2][6][7][8]

Chemical structures of the most common phytoestrogens found in plants (top and middle) compared with estrogen (bottom) found in animals

Structure

Phytoestrogens mainly belong to a large group of substituted

Mycoestrogens have similar structures and effects, but are not components of plants; these are mold metabolites of Fusarium, especially common on cereal grains,[9][10][11] but also occurring elsewhere, e.g. on various forages.[12] Although mycoestrogens are rarely taken into account in discussions about phytoestrogens, these are the compounds that initially generated the interest on the topic.[13]

Mechanism of action

Phytoestrogens exert their effects primarily through binding to estrogen receptors (ER).[14] There are two variants of the estrogen receptor, alpha (ER-α) and beta (ER-β) and many phytoestrogens display somewhat higher affinity for ER-β compared to ER-α.[14]

The key structural elements that enable phytoestrogens to bind with high affinity to estrogen receptors and display estradiol-like effects are:[2]

  • The phenolic ring that is indispensable for binding to estrogen receptor
  • The ring of isoflavones mimicking a ring of estrogens at the receptors binding site
  • Low molecular weight similar to estrogens (MW=272)
  • Distance between two hydroxyl groups at the isoflavones nucleus similar to that occurring in estradiol
  • Optimal hydroxylation pattern

In addition to interaction with ERs, phytoestrogens may also modulate the concentration of endogenous estrogens by binding or inactivating some enzymes, and may affect the bioavailability of sex hormones by depressing or stimulating the synthesis of sex hormone-binding globulin (SHBG).[8]

Emerging evidence shows that some phytoestrogens bind to and transactivate peroxisome proliferator-activated receptors (PPARs).[15][16] In vitro studies show an activation of PPARs at concentrations above 1 μM, which is higher than the activation level of ERs.[17][18] At the concentration below 1 μM, activation of ERs may play a dominant role. At higher concentrations (>1 μM), both ERs and PPARs are activated. Studies have shown that both ERs and PPARs influence each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.[15][16][17]

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names
Relative binding affinities
(RBA, %)a
Absolute binding affinities
(Ki, nM)a
Action
ERα
ERβ
ERα
ERβ
Estradiol E2; 17β-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16α-OH-17β-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17α-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol
16β-Hydroxy-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol
16α-Hydroxy-17α-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol
16β-Hydroxy-17α-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17β-glucuronide
E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17β-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol 35–68 90–100 0.15 0.20 Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol 20 49 0.50 0.37 Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol 68 72 0.15 0.25 Estrogen
Δ8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17α-Methyl-17β-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384
63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERα agonist
16α-LE2 16α-Lactone-17β-estradiol 14.6–57 0.089 0.27 131 ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol 30.2 2.30 ? ? ERα agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERα antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol 0.35 22.0–83 12.9 0.50 ERβ agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβ agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβ agonist
SERBA-2 ? ? 14.5 1.54 ERβ agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol
2.0 ? ? ? Xenoestrogen
β-Sitosterol
<0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol α-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol β-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone
Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT
0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT
0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5α-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol
A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione
A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3α-Androstanediol 3α-Adiol 0.07 0.3 260 48 Androgen
3β-Androstanediol 3β-Adiol 3 7 6 2 Androgen
Androstanedione 5α-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5β-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17α-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3α-androstanediol
17α-Ethynyl-3α-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3β-androstanediol
17α-Ethynyl-3β-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel
5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7α-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δ4-Tibolone 7α-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1)
ERβ
proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.

Ecology

Phytoestrogens are involved in the synthesis of antifungal benzofurans and phytoalexins, such as medicarpin (common in legumes), and sesquiterpenes, such as capsidiol in tobacco.[19] Soybeans naturally produce isoflavones, and are therefore a dietary source for isoflavones.

Phytoestrogens are ancient naturally occurring substances, and as dietary phytochemicals they are considered to have coevolved with mammals. In the human diet, phytoestrogens are not the only source of exogenous estrogens.

Xenoestrogens (novel, man-made), are found as food additives[20] and ingredients, and also in cosmetics, plastics, and insecticides. Environmentally, they have similar effects as phytoestrogens, making it difficult to clearly separate the action of these two kind of agents in studies.[21]

Avian studies

The consumption of plants with unusual content of phytoestrogens, under drought conditions, has been shown to decrease fertility in quail.[22] Parrot food as available in nature has shown only weak estrogenic activity. Studies have been conducted on screening methods for environmental estrogens present in manufactured supplementary food, with the purpose of aiding reproduction of endangered species.[23]

Food sources

According to one study of nine common phytoestrogens in a Western diet, foods with the highest relative phytoestrogen content were nuts and oilseeds, followed by soy products, cereals and breads, legumes, meat products, and other processed foods that may contain soy, vegetables, fruits, alcoholic, and nonalcoholic beverages. Flax seed and other oilseeds contained the highest total phytoestrogen content, followed by soybeans and tofu.[24] The highest concentrations of isoflavones are found in soybeans and soybean products followed by legumes, whereas lignans are the primary source of phytoestrogens found in nuts and oilseeds (e.g. flax) and also found in cereals, legumes, fruits and vegetables. Phytoestrogen content varies in different foods, and may vary significantly within the same group of foods (e.g. soy beverages, tofu) depending on processing mechanisms and type of soybean used. Legumes (in particular soybeans), whole grain cereals, and some seeds are high in phytoestrogens.

A more comprehensive list of foods known to contain phytoestrogens includes:

Food content of phytoestrogens is very variable and accurate estimates of intake are therefore difficult and depends on the databases used.

Mediterranean Countries and more than 20 mg/d in the United Kingdom.[32] The high intake in the UK is partly explained by the use of soy in the Chorleywood bread process.[33] An epidemiological study of women in the United States found that the dietary intake of phytoestrogens in healthy post-menopausal Caucasian women is less than one milligram daily.[34]

Effects on humans

In humans, phytoestrogens are digested in the small intestine, poorly absorbed into the circulatory system, circulate in plasma, and are excreted in the urine. Metabolic influence is different from that of grazing animals due to the differences between ruminant versus monogastric digestive systems.[21]

As of 2020, there is insufficient clinical evidence to determine that phytoestrogens have effects in humans.[35]

Females

It is unclear if phytoestrogens have any effect on the cause or prevention of cancer in women.[1][36] Some epidemiological studies have suggested a protective effect against breast cancer.[1][36][37] Additionally, other epidemiological studies found that consumption of soy estrogens is safe for patients with breast cancer, and that it may decrease mortality and recurrence rates.[1][38][39] It remains unclear if phytoestrogens can minimize some of the deleterious effects of low estrogen levels (hypoestrogenism) resulting from oophorectomy, menopause, or other causes.[36] A Cochrane review of the use of phytoestrogens to relieve the vasomotor symptoms of menopause (hot flashes) stated that there was no conclusive evidence to suggest any benefit to their use, although genistein effects should be further investigated.[40]

Males

It is unclear if phytoestrogens have any effect on male sexuality, with conflicting results about the potential effects of isoflavones originating from soy.[1] Some studies showed that isoflavone supplementation had a positive effect on sperm concentration, count, or motility, and increased ejaculate volume.[41][42] Sperm count decline and increasing rate of testicular cancers in the West may be linked to a higher presence of isoflavone phytoestrogens in the diet while in utero, but such a link has not been definitively proven.[43] Furthermore, while there is some evidence that phytoestrogens may affect male fertility, more recent reviews of available studies found no link,[44][45] and instead suggests that healthier diets such as the Mediterranean diet might have a positive effect on male fertility.[45] Neither isoflavones nor soy have been shown to affect male reproductive hormones in healthy individuals.[44][46]

Infant formula

Some studies have found that some concentrations of isoflavones may have effects on intestinal cells. At low doses, genistein acted as a weak estrogen and stimulated cell growth; at high doses, it inhibited proliferation and altered cell cycle dynamics. This biphasic response correlates with how genistein is thought to exert its effects.[47] Some reviews express the opinion that more research is needed to answer the question of what effect phytoestrogens may have on infants,[48][49] but their authors did not find any adverse effects. Studies conclude there are no adverse effects in human growth, development, or reproduction as a result of the consumption of soy-based infant formula compared to conventional cow-milk formula.[50][51][52] The American Academy of Pediatrics states: "although isolated soy protein-based formulas may be used to provide nutrition for normal growth and development, there are few indications for their use in place of cow milk-based formula. These indications include (a) for infants with galactosemia and hereditary lactase deficiency (rare) and (b) in situations in which a vegetarian diet is preferred."[53]

Ethnopharmacology

In some countries, phytoestrogenic plants have been used for centuries in the treatment of menstrual and menopausal problems, as well as for fertility problems.[54] Plants used that have been shown to contain phytoestrogens include Pueraria mirifica[55] and its close relative kudzu,[56] Angelica,[57] fennel,[28] and anise. In a rigorous study, the use of one such source of phytoestrogen, red clover, has been shown to be safe, but ineffective in relieving menopausal symptoms[58] (black cohosh is also used for menopausal symptoms, but does not contain phytoestrogens[59]).

See also

References

  1. ^ a b c d e f "Isoflavones". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis. October 2016. Retrieved 6 August 2022.
  2. ^ .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. ^ .
  9. ]
  10. .
  11. .
  12. .
  13. .
  14. ^ .
  15. ^ .
  16. ^ .
  17. ^ .
  18. .
  19. .
  20. .
  21. ^ .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. ^ .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. ^ .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. ^ .
  45. ^ .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .
  59. .