Plasmodium gallinaceum

Source: Wikipedia, the free encyclopedia.

Plasmodium gallinaceum
Scanning electron micrograph of invasion of mosquito midgut
Scanning electron micrograph of invading mosquito midgut
Scientific classification Edit this classification
Domain: Eukaryota
Clade: Diaphoretickes
Clade: SAR
Clade: Alveolata
Phylum: Apicomplexa
Class: Aconoidasida
Order: Haemospororida
Family: Plasmodiidae
Genus: Plasmodium
Species:
P. gallinaceum
Binomial name
Plasmodium gallinaceum
Brumpt
, 1935

Plasmodium gallinaceum is a species of the genus Plasmodium (subgenus Haemamoeba) that causes malaria in poultry.[1]

Description

This species was described by

Ceylon (now Sri Lanka).[2]

Stages

vector host.[3] They are not transmissible – if they enter an avian host they will not develop.[3]

Sporozoites are the transmission stage.[3] If they enter an avian host they may infect.[3]

Vectors

P. gallinaceum manipulates A. aegypti to increase its own chances of success.

oocysts in the gut increase the volume of each blood meal.[3] This lowers the chances of disgorgement of the parasites into the final host – chicken (Gallus gallus domesticus) – which is important because oocysts can't infect.[3] This prolongs the average duration of oocyst residence in the vector, increasing their chance of successfully maturing to the transmission stage.[3]

On the other hand

sporozoites do the opposite: They decrease the volume of meals, increasing the number of meals taken, shortening the time they must continue to be in the vector, and increasing their chance of being successfully disgorged into a final host.[3] Because this is the transmittable (infectious) stage that is desirable.[3]

This appears to generalize to P. gallinaceum and any combination of mosquito and avian.[3]

Virulence factors

the antibody's binding is inhibited by a particular CSP motif, suggesting antibody efficacy is due to its anti-CSP effect.[4] This 15-amino acid motif is one found by the original Dame et al., 1984 discovery of CSP which contains the 5-length CSP Region I.[4]
: 395–396  [5]

Pathology

Infection produces severe changes in

aspartate aminotransferase, glutamate dehydrogenase, and γ-glutamyltransferase.)[6]

References

  1. ^ "Plasmodium Infection". The Merck Veterinary Manual. 2006. Retrieved 2007-07-03.
  2. Brumpt, Emile (1936). "Etude Expérimentale du Plasmodium gallinaceum Parasite de la Poule Domestique. Transmission de ce Germe par Stegomyia fasciata et Stegomyia albopicta" [Experimental Study on the Plasmodium gallinaceum Parasite of the Domesticated Chicken : Transmission of the Pathogen by Stegomyia fasciata and Stegomyia albopicta]. Annales de Parasitologie
    : 597–620.
  3. ^ a b c d e f g h i j k
    • These reviews:
    •  • Lefevre, Thierry; Thomas, Frederic (2008). "Behind the scene, something else is pulling the strings: Emphasizing parasitic manipulation in vector-borne diseases".
      S2CID 86576999
      .
  4. ^ a b c d e Ghosh, Anil Kumar; Jacobs-Lorena, Marcelo (2009-07-14). "Plasmodium sporozoite invasion of the mosquito salivary gland".
    NIHMS
    # 124325.
  5. ^ Baldacci, Patricia; Ménard, Robert (2004-08-31). "The elusive malaria sporozoite in the mammalian host".
    S2CID 30488807
    .
  6. ^ a b c d e
    • These reviews...
    •  • Alkadi, Hussien (2007). "Antimalarial Drug Toxicity: A Review". Review.
      S2CID 24382098
      .

Further reading

Kumnuan, Rapeeporn; Pattaradilokrat, Sittiporn; Chumpolbanchornc, Kamlang (November 2013). "In vivo transmission blocking activities of artesunate on the avian malaria parasite Plasmodium gallinaceum".

PMID 23937960
.